Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640667

RESUMO

Seismic interpretation is a fundamental process for hydrocarbon exploration. This activity comprises identifying geological information through the processing and analysis of seismic data represented by different attributes. The interpretation process presents limitations related to its high data volume, own complexity, time consumption, and uncertainties incorporated by the experts' work. Unsupervised machine learning models, by discovering underlying patterns in the data, can represent a novel approach to provide an accurate interpretation without any reference or label, eliminating the human bias. Therefore, in this work, we propose exploring multiple methodologies based on unsupervised learning algorithms to interpret seismic data. Specifically, two strategies considering classical clustering algorithms and image segmentation methods, combined with feature selection, were evaluated to select the best possible approach. Additionally, the resultant groups of the seismic data were associated with groups obtained from well logs of the same area, producing an interpretation with aggregated lithologic information. The resultant seismic groups correctly represented the main seismic facies and correlated adequately with the groups obtained from the well logs data.


Assuntos
Algoritmos , Aprendizado de Máquina não Supervisionado , Análise por Conglomerados , Humanos
2.
Sensors (Basel) ; 21(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451100

RESUMO

PROBLEM: An application of Explainable Artificial Intelligence Methods for COVID CT-Scan classifiers is presented. MOTIVATION: It is possible that classifiers are using spurious artifacts in dataset images to achieve high performances, and such explainable techniques can help identify this issue. AIM: For this purpose, several approaches were used in tandem, in order to create a complete overview of the classificatios. METHODOLOGY: The techniques used included GradCAM, LIME, RISE, Squaregrid, and direct Gradient approaches (Vanilla, Smooth, Integrated). MAIN RESULTS: Among the deep neural networks architectures evaluated for this image classification task, VGG16 was shown to be most affected by biases towards spurious artifacts, while DenseNet was notably more robust against them. Further impacts: Results further show that small differences in validation accuracies can cause drastic changes in explanation heatmaps for DenseNet architectures, indicating that small changes in validation accuracy may have large impacts on the biases learned by the networks. Notably, it is important to notice that the strong performance metrics achieved by all these networks (Accuracy, F1 score, AUC all in the 80 to 90% range) could give users the erroneous impression that there is no bias. However, the analysis of the explanation heatmaps highlights the bias.


Assuntos
Inteligência Artificial , COVID-19 , Viés , Humanos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
3.
Sensors (Basel) ; 20(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717787

RESUMO

The adequate automatic detection of driver fatigue is a very valuable approach for the prevention of traffic accidents. Devices that can determine drowsiness conditions accurately must inherently be portable, adaptable to different vehicles and drivers, and robust to conditions such as illumination changes or visual occlusion. With the advent of a new generation of computationally powerful embedded systems such as the Raspberry Pi, a new category of real-time and low-cost portable drowsiness detection systems could become standard tools. Usually, the proposed solutions using this platform are limited to the definition of thresholds for some defined drowsiness indicator or the application of computationally expensive classification models that limits their use in real-time. In this research, we propose the development of a new portable, low-cost, accurate, and robust drowsiness recognition device. The proposed device combines complementary drowsiness measures derived from a temporal window of eyes (PERCLOS, ECD) and mouth (AOT) states through a fuzzy inference system deployed in a Raspberry Pi with the capability of real-time response. The system provides three degrees of drowsiness (Low-Normal State, Medium-Drowsy State, and High-Severe Drowsiness State), and was assessed in terms of its computational performance and efficiency, resulting in a significant accuracy of 95.5% in state recognition that demonstrates the feasibility of the approach.


Assuntos
Condução de Veículo , Acidentes de Trânsito/prevenção & controle , Fadiga , Humanos , Iluminação , Fases do Sono , Vigília
4.
Sensors (Basel) ; 19(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284419

RESUMO

An application of explainable artificial intelligence on medical data is presented. There is an increasing demand in machine learning literature for such explainable models in health-related applications. This work aims to generate explanations on how a Convolutional Neural Network (CNN) detects tumor tissue in patches extracted from histology whole slide images. This is achieved using the "locally-interpretable model-agnostic explanations" methodology. Two publicly-available convolutional neural networks trained on the Patch Camelyon Benchmark are analyzed. Three common segmentation algorithms are compared for superpixel generation, and a fourth simpler parameter-free segmentation algorithm is proposed. The main characteristics of the explanations are discussed, as well as the key patterns identified in true positive predictions. The results are compared to medical annotations and literature and suggest that the CNN predictions follow at least some aspects of human expert knowledge.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Metástase Linfática/patologia , Redes Neurais de Computação , Algoritmos , Aprendizado Profundo , Humanos , Linfonodos/patologia , Modelos Biológicos
5.
Int J Neural Syst ; 24(8): 1450031, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25406641

RESUMO

This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.


Assuntos
Inteligência Artificial , Lógica Fuzzy , Redes Neurais de Computação , Reforço Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA