Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 23(22): e202200354, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35781918

RESUMO

Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.


Assuntos
Hidrolases de Éster Carboxílico , Engenharia de Proteínas , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Biotecnologia , Catálise , Biocatálise , Enzimas/metabolismo
2.
Appl Microbiol Biotechnol ; 104(23): 10033-10045, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026494

RESUMO

The enzymatic synthesis of alkyl ferulates is an important reaction in cosmetic and pharmaceutical chemistries, since it may allow to expand the biorefinery concept valorizing biomass wastes enriched in ferulic acid. However, robust biocatalysts for that purpose are scarce. Herein, we have immobilized the type A feruloyl esterase from Aspergillus niger (AnFaeA) as cross-linked enzyme aggregates, employing chitosan as co-feeder (ChCLEAs). High immobilization yields and relative activity recovery were attained in all assessed conditions (> 93%). Furthermore, we enhanced the thermal stability of the soluble enzyme 32-fold. AnFaeA-ChCLEAs were capable to quantitatively perform the solvent-free direct esterification of short- to medium-chain alkyl ferulates (C4-C12) in less than 24 h. By raising the operational temperature to 50 °C, AnFaeA-ChCLEAs transformed 350 mM ferulic acid into isopentyl ferulate with a space-time yield of 46.1 g of product × L-1 × day-1, 73-fold higher than previously reported. The overall sustainability of this alkyl ferulate production bioprocess is supported by the high total turnover number (TTN 7 × 105) and the calculated green metrics (E factor = 30). Therefore, we herein present a robust, efficient, and versatile heterogeneous biocatalyst useful for the synthesis of a wide diversity of alkyl ferulates. KEY POINTS: • CLEAs of feruloyl esterase A from A. niger using chitosan as co-feeder were obtained. • Microenvironment of the biocatalysts allowed to obtain C1 to C18 alkyl ferulates. • Biocatalyst at boundary conditions showed a high productivity of 46 g/L day. Graphical Abstract.


Assuntos
Aspergillus niger , Quitosana , Hidrolases de Éster Carboxílico
3.
J Biotechnol ; 316: 6-16, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32305629

RESUMO

Feruloyl esterases synthesize butyl hydroxycinnamates, molecules possessing interesting biological properties, nonetheless, they exhibit a low stability under synthesis conditions in organic solvents, restricting its use. To enhance its operational stability in synthesis, we immobilized type A feruloyl esterase from Aspergillus niger (AnFAEA) using several carrier-bound and carrier-free strategies. The most active biocatalysts were: 1) AnFAEA immobilized on epoxy-activated carriers (protein load of 0.6 mgenzyme x mg-1carrier) that recovered 91 % of the initial hydrolytic activity, and 2) AnFAEA aggregated and cross-linked in the presence of 5 mg of BSA and 15 mM of glutaraldehyde (AnFAEA-amino-CLEAs), which exhibited 385 % of its initial hydrolytic activity; both using 4-nitrophenyl butyrate as substrate. The AnFAEA-amino-CLEAs were 12.7 times more thermostable at 60 °C than the AnFAEA immobilized on epoxy-activated carrier, thus AnFAEA-amino-CLEAs were selected for further characterization. Interestingly, during methyl sinapate hydrolysis (pH 7.2 and 30 °C), AnFAEA-amino-CLEAs KM was 15 % higher, while during butyl sinapate synthesis the KM was reduced in 63 %, both compared with the soluble enzyme. The direct esterification of butyl sinapate at solvent free conditions using sinapic acid 50 mM, reached 95 % conversion after 24 h employing AnFAEA-amino-CLEAs, which could be used for 10 cycles without significant activity losses, demonstrating their outstanding operational stability.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Enzimas Imobilizadas/metabolismo , Biocatálise , Butiratos/metabolismo , Hidrolases de Éster Carboxílico/química , Enzimas Imobilizadas/química , Glutaral/química , Metacrilatos/química , Polímeros/química , Soroalbumina Bovina/química , Dióxido de Silício/química
4.
Molecules ; 22(9)2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869529

RESUMO

Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr), at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold) in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea), cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ratio) than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of their application at large scale processes.


Assuntos
Enzimas Imobilizadas/química , Hypocrea/química , Lipase/química , Reagentes de Ligações Cruzadas/química , Brometo de Cianogênio/química , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Ativação Enzimática , Estabilidade Enzimática , Glutaral/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Óleos/química , Desnaturação Proteica , Estabilidade Proteica , Sefarose/química , Solventes , Estereoisomerismo , Especificidade por Substrato , Temperatura
5.
J Mater Chem B ; 5(23): 4478-4486, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263975

RESUMO

The biomineralisation of metal phosphates is a promising approach to develop more efficient nanobiocatalysts; however, the interactions between the protein and the inorganic mineral are poorly understood. Elucidating which protein regions most likely participate in the mineral formation will guide the fabrication of more efficient biocatalysts based on metal-phosphate nanoflowers. We have biomineralised the lipase from Thermomyces lanuginosus using three calcium, zinc and copper phosphates to fabricate different types of bio-inorganic nanoflowers. To better understand how the biomineralisation process affects the enzyme properties, we have computationally predicted the protein regions with a higher propensity for binding Ca2+, Cu2+ and Zn2+. These binding sites can be considered as presumable nucleation points where the biomineralisation process starts and explain why different metals can form bio-inorganic nanoflowers of the same enzyme with different functional properties. The formation of calcium, copper and zinc phosphates in the presence of this lipase gives rise to nanoflowers with different morphologies and different enzymatic properties such as activity, stability, hyperactivation and activity-pH profile; these functional differences are supported by structural studies based on fluorescence spectroscopy and can be explained by the different locations of the predicted nucleation sites for the different metals. Among the three metals used herein, the mineralisation of this lipase with zinc-phosphate enables the fabrication of bio-inorganic nanoflowers 34 times more stable than the soluble enzyme. These bio-inorganic nanoflowers were reused for 8 reaction cycles achieving 100% yield in the hydrolysis of p-nitrophenol butyrate but losing more than 50% of their initial activity after 6 operational cycles. Finally, this heterogeneous biocatalyst was more active and enantioselective than the soluble enzyme (ee = 79%(R)) towards the kinetic resolution of rac-1-phenylethyl acetate yielding the R enantiomer with ee = 84%.

6.
Appl Biochem Biotechnol ; 174(5): 1859-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149456

RESUMO

A naturally immobilized biocatalyst with lipase activity was produced by Thermomyces lanuginosus on solid-state fermentation with perlite as inert support. Maxima lipase activities (22 and 120 U/g of dry matter, using p-nitrophenyl octanoate and trioctanoine, respectively, as substrates) were obtained after 72 h of solid culture, remaining nearly constant up to 120 h. Maxima lipase activity was found at 60 to 85 °C and pH 10. The biocatalyst was stable at 60 °C for at least 4 h of incubation and a pH from 7 to 10. Energy values of activation and deactivation of lipase were of 26 and 6.7 kJ/mol, respectively. The biocatalyst shows high selectivity for the release of the omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), during the hydrolysis of sardine oil. The EPA/DHA ratio (16:6) released by this biocatalyst was superior to that obtained with the commercial preparations of T. lanuginosus.


Assuntos
Ascomicetos/enzimologia , Ácidos Graxos/metabolismo , Óleos de Peixe/microbiologia , Peixes/metabolismo , Lipase/biossíntese , Animais , Catálise , Ativação Enzimática , Estabilidade Enzimática , Hidrólise , Temperatura
7.
Methods Mol Biol ; 861: 227-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22426722

RESUMO

Lipases are widely used in the industry for different purposes. Although these enzymes are mainly produced by submerged fermentation, lipase production by solid-state fermentation (SSF) has been gaining interest due to the advantages of this type of culture. Major advantages are higher production titers and productivity, less catabolite repression, and use of the dried fermented material as biocatalyst. This chapter describes a traditional methodology to produce fungal (Rhizopus homothallicus) lipases by SSF using perlite as inert support. The use of different devices (glass columns or Erlenmeyer flasks) and type of inoculum (spores or growing mycelium) is considered so that lipase production by SSF could be easily performed in any laboratory.


Assuntos
Lipase/biossíntese , Micélio/enzimologia , Rhizopus/enzimologia , Esporos Fúngicos/enzimologia , Óxido de Alumínio/química , Reatores Biológicos , Biotecnologia , Contagem de Colônia Microbiana , Fermentação , Vidro/química , Concentração de Íons de Hidrogênio , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA