Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(8): e07816, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423146

RESUMO

Natural products have been used in the treatment of illnesses throughout the history of humankind. Exploitation of bioactive compounds from natural sources can aid in the discovery of new drugs, provide the scaffold of new medicines. In the face of challenging diseases, such as the COVID-19 pandemic, for which there was no effective treatment, nature could offer insights as to novel therapeutic options for control measures. However, the environmental impact and supply chain of bioactive production must be carefully evaluated to ensure the detrimental effects will not outweigh the potential benefits gained. History has already proven that highly bioactive compounds can be rare and not suitable for medicinal exploitation; therefore, the sustainability must be accessed before expensive, time-demanding, and large trials can be initialized. A sustainable option to readily produce a phytotherapy with minimal environmental stress is the use of agro-industry wastes, a by-product produced in high quantities. In this review we evaluate the sustainability issues associated with the production of phytotherapy as a readily available tool for pandemic control.

2.
J Ethnopharmacol ; 112(2): 248-54, 2007 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-17446019

RESUMO

Copaiba oil is an oleoresin obtained from the Copaifera L. genus (Leguminoseae) commonly featured in anti-inflammatory recipe prescribed by Amazonian traditional medical practitioners and featured in Europe and North America pharmacopeias of the past. Chemical and anti-inflammatory activity investigations from the copaiba oils obtained from Copaifera multijuga Hayne, Copaifera cearensis Huber ex Ducke and Copaifera reticulata Ducke species have proved that, although similar, these oleoresins possess varied composition and anti-inflammatory activity. Chromatographic studies showed that the main compound among sesquiterpenes was beta-caryophyllene (57.5, 19.7 and 40.9%, respectively), followed by alpha-humulene, alpha-copaene, alpha-bergamotene, delta-cadinene, with different amounts in each oleoresin. Among the diterpenes, copalic acid was the main component from Copaifera multijuga Hayne (6.2%) and was found in all the oleoresins studied. In Copaifera cearensis Huber ex Ducke, clorechinic (11.3%) and hardwickiic acids (6.2%) were the major diterpenes while kaurenoic (3.9%) and kolavenic acids (3.4%) predominated in Copaifera reticulata Ducke. The pharmacologic effects of the three oleoresins were evaluated in vitro by measuring the NO production by murine macrophages and in vivo using the zymosan induced pleurisy model in mice. The Copaiba Oil from Copaifera multijuga Hayne (100 mg/kg) was the most potent, inhibiting both NO production and the pleurisy induced by zymosan. The oleoresins from Copaifera cearensis Huber ex Ducke and Copaifera reticulata Ducke were also able to inhibit NO production and the pleurisy but with less intensity.


Assuntos
Anti-Inflamatórios , Bálsamos/química , Bálsamos/farmacologia , Fabaceae/química , Animais , Bálsamos/uso terapêutico , Brasil , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Gasosa , Cromatografia Gasosa-Espectrometria de Massas , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Pleurisia/tratamento farmacológico , Pleurisia/microbiologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA