Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37626964

RESUMO

The immune response of Atlantic salmon to sea lice has been extensively studied, but we still do not know the mechanisms by which some fish become resistant and others do not. In this study, we estimated the heritabilities of three key proteins associated with the innate immunity and resistance of Salmo salar against the sea louse Caligus rogercresseyi. In particular, we quantified the abundance of 2 pro-inflammatory cytokines, Tnfα and Il-8, and an antioxidant enzyme, Nkef, in Atlantic salmon skin and gill tissue from 21 families and 268 individuals by indirect ELISA. This covers a wide parasite load range from low or resistant (mean sea lice ± SE = 8.7 ± 0.9) to high or susceptible (mean sea lice ± SE = 43.3 ± 2.0). Our results showed that susceptible fish had higher levels of Nkef and Tnfα than resistant fish in their gills and skin, although gill Il-8 was higher in resistant fish, while no significant differences were found in the skin. Furthermore, moderate to very high heritable genetic variation was estimated for Nkef (h2 skin: 0.96 ± 0.14 and gills: 0.97 ± 0.11) and Tnfα (h2 skin: 0.53 ± 0.17 and gills: 0.32 ± 0.14), but not for Il-8 (h2 skin: 0.22 ± 0.12 ns and gills: 0.09 ± 0.08 ns). This work provides evidence that Nkef and Tnfα protein expressions are highly heritable and related to resistance against sea lice in Atlantic salmon.

2.
G3 (Bethesda) ; 10(6): 2117-2126, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327452

RESUMO

Despite its peculiar distribution, the biology of the southernmost bat species in the world, the Chilean myotis (Myotis chiloensis), has garnered little attention so far. The species has a north-south distribution of c. 2800 km, mostly on the eastern side of the Andes mountain range. Use of extended torpor occurs in the southernmost portion of the range, putting the species at risk of bat white-nose syndrome, a fungal disease responsible for massive population declines in North American bats. Here, we examined how geographic distance and topology would be reflected in the population structure of M. chiloensis along the majority of its range using a double digestion RAD-seq method. We sampled 66 individuals across the species range and discovered pronounced isolation-by-distance. Furthermore, and surprisingly, we found higher degrees of heterozygosity in the southernmost populations compared to the north. A coalescence analysis revealed that our populations may still not have reached secondary contact after the Last Glacial Maximum. As for the potential spread of pathogens, such as the fungus causing WNS, connectivity among populations was noticeably low, especially between the southern hibernatory populations in the Magallanes and Tierra del Fuego, and more northerly populations. This suggests the probability of geographic spread of the disease from the north through bat-to-bat contact to susceptible populations is low. The study presents a rare case of defined population structure in a bat species and warrants further research on the underlying factors contributing to this. See the graphical abstract here. https://doi.org/10.25387/g3.12173385.


Assuntos
Ascomicetos , Quirópteros , Micoses , Animais , Ascomicetos/genética , Quirópteros/genética , Genômica , Micoses/genética , Micoses/veterinária , Nariz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA