Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1357986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011303

RESUMO

Introduction: Domestic production of pepper (Capsicum spp.) is shrinking while demand within the US is growing. Lack of availability and cost of labor often present an obstacle for domestic producers both practically and economically. As a result, switching to harvesting peppers mechanically is anticipated as a key strategy to help domestic producers compete in the international market. Mechanical harvest efficiency can be improved through breeding. One important trait that mechanical harvest compatible material should have is an easy destemming trait: low force separation of the pedicel and calyx from the fruit. Methods: To detect the genetic sources underlying a novel easy destemming trait for the purpose of future breeding efforts in New Mexico pod-type green chile, we performed QTL analysis on three F2:F3 populations, coming from three New Mexico pod-type varieties: 'NuMex Odyssey,' 'NuMex Iliad,' and 'NuMex Joe E. Parker,' each crossed with a parent with an easy destemming trait: MUC14. Genotyping was done through genotyping by sequencing (GBS) and phenotyping was done for destemming and fruit trait measurements. Correlations between measurements were found through the R package hmisc and QTL analysis was done through R/qtl. Results: A strong relationship was seen between destemming and aspects of fruit morphology, particularly, destemming force and fruit width (Pearson's correlation coefficient r=0.75). Major QTLs for destemming and fruit size were discovered. Of these, the largest destemming force QTLs for all populations (PVE=34.5-69.9%) were on chromosome 10, and in two populations QTLs for destemming force were found on chromosome 3 (Percent Variance Explained (PVE)=10.7-18.8%). Fruit size-related QTLs in all populations colocalized in these same areas on chromosomes 3 and 10. Discussion: This suggests that fruit shape may be genetically linked to destemming, and breeders interested in selecting for easy destemming pepper will also have to pay attention to fruit size and shape.

2.
PLoS Biol ; 16(8): e2006352, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30086128

RESUMO

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Assuntos
Microbiota/genética , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Zea mays/metabolismo , México , Microbiota/fisiologia , Filogenia , Desenvolvimento Vegetal , Mucilagem Vegetal/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Solo , Microbiologia do Solo
3.
Am J Bot ; 100(5): 930-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594914

RESUMO

PREMISE OF THE STUDY: Analyses of genetic structure and phylogenetic relationships illuminate the origin and domestication of modern crops. Despite being an important worldwide vegetable, the genetic structure and domestication of carrot (Daucus carota) is poorly understood. We provide the first such study using a large data set of molecular markers and accessions that are widely dispersed around the world. • METHODS: Sequencing data from the carrot transcriptome were used to develop 4000 single nucleotide polymorphisms (SNPs). Eighty-four genotypes, including a geographically well-distributed subset of wild and cultivated carrots, were genotyped using the KASPar assay. • KEY RESULTS: Analysis of allelic diversity of SNP data revealed no reduction of genetic diversity in cultivated vs. wild accessions. Structure and phylogenetic analysis indicated a clear separation between wild and cultivated accessions as well as between eastern and western cultivated carrot. Among the wild carrots, those from Central Asia were genetically most similar to cultivated accessions. Furthermore, we found that wild carrots from North America were most closely related to European wild accessions. • CONCLUSIONS: Comparing the genetic diversity of wild and cultivated accessions suggested the absence of a genetic bottleneck during carrot domestication. In conjunction with historical documents, our results suggest an origin of domesticated carrot in Central Asia. Wild carrots from North America were likely introduced as weeds with European colonization. These results provide answers to long-debated questions of carrot evolution and domestication and inform germplasm curators and breeders on genetic substructure of carrot genetic resources.


Assuntos
Agricultura , Daucus carota/genética , Filogenia , Polimorfismo de Nucleotídeo Único , África do Norte , Ásia , DNA de Plantas/genética , Europa (Continente) , Marcadores Genéticos , Pigmentos Biológicos , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA