Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 20(8): 1027-1032, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34292539

RESUMO

The search for new materials that can be applied in the treatment of injured human tissues has led to the development of new dressings. Membranes have potential as dressing materials because they can be fitted to and interact with the tissue surface. In this study, we analyze the morphological properties and wettability of latex membranes, along with the incorporation of the photosensitizer methylene blue, in the context of the utility of the membranes in curative applications involving photodynamic therapy (PDT). It was observed that deposition of the photosensitizer into latex membranes increased both the surface roughness and wettability. Antifungal testing indicated that antimicrobial PDT assisted by the latex membranes incorporating methylene blue effectively inactivated Candida albicans.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Corantes/química , Látex , Membranas Artificiais , Azul de Metileno/química , Azul de Metileno/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Fotoquimioterapia
2.
Colloids Surf B Biointerfaces ; 180: 393-400, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082777

RESUMO

Candida albicans is responsible for the majority of nosocomial infections affecting immunocompromised patients. Systemic antifungals may promote microbial resistance, which has led to the search for alternative treatments, such as photothermal therapy (PTT). PTT assumes that the interaction of electromagnetic radiation with a photothermal agent generates heat that can lead to the destruction of tumor cells and the death of microorganisms. Carbon nanotubes (CNTs) have the potential for applications in biomedical systems, including acting as controlled deliverers of drugs, biosensors and scaffolds for tissue engineering and regenerative medicine. Furthermore, the absorption of radiation by CNTs in the infrared region induces an increase in temperature, which makes CNTs candidates for photothermal agents. In this work, the photothermal inactivation of C. albicans was evaluated by multiple wall CNTs associated with laser radiation in the near-infrared region. The mechanisms that are involved in inactivation were evaluated through cell susceptibility studies and an analysis of microscopic images that are associated with mathematical models and fractal concepts. The results indicate that direct contact between the cells and CNTs without irradiation does not lead to cell death, whereas the laser-mediated process is effective in inactivation. The application of the laws of scale and fractal concepts indicate that in the control groups, there are two distinct regimes that are delimited by the mean diameter of the microorganisms, as described by the Eden model and by the quasi-Euclidean surface. For the irradiated groups, the surfaces present only one regime described by Kardar-Parisi-Zhang, KPZ. The analysis of the fractality of the system by mathematical models can help in the identification of new strategies for the inactivation of microorganisms.


Assuntos
Candida albicans/efeitos da radiação , Fractais , Luz , Modelos Teóricos , Nanotubos de Carbono/química , Temperatura , Candida albicans/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA