Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4624, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35302061

RESUMO

In 1965 Duwez et al. reported having generated an amorphous, stable phase of palladium-silicon in the region 15 to 23 atomic percent, at.%, silicon. These pioneering efforts have led to the development of solid materials that are now known as Bulk Metallic Glasses, BMG. In 2019 Rodríguez et al. discovered, computationally, that bulk amorphous Pd becomes magnetic, and so does porous/amorphous Pd. Puzzled by these results, the study of several solid binary systems in the Pd-rich zone was undertaken; in particular, the study of the glassy metallic alloy a-Pd[Formula: see text]Si[Formula: see text], for [Formula: see text], (c in at.%) to see what their topology is, what their electronic properties are and to inquire about their magnetism. In this work it is shown that this metallic glass is in fact magnetic in the region [Formula: see text]. Collaterally [Formula: see text] and [Formula: see text] magnetization curves are shown where the net magnetic moment is presented. The topology and the position of the first few peaks of the pair distribution functions, which agrees well with experiment, are also discussed. The BMGs produced experimentally so far are limited in size, but despite this limitation, recent industrial efforts have developed some useful devices that may revolutionize technology.

2.
Sci Rep ; 9(1): 5256, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918292

RESUMO

All solid phases of bismuth under pressure, but one, have been experimentally found to superconduct. From Bi-I to Bi-V, avoiding Bi-IV, they become superconductors and perhaps Bi-IV may also become superconductive. To investigate the influence of the electronic properties N(E) and the vibrational properties F(ω) on their superconductivity we have ab initio calculated them for the corresponding experimental crystalline structures, and using a BCS approach have been able to determine their critical temperatures Tc obtaining results close to experiment: For Bi-I (The Wyckoff Phase) we predicted a transition temperature of less than 1.3 mK and a year later a Tc of 0.5 mK was measured; for Bi-II Tc is 3.9 K measured and 3.6 K calculated; Bi-III has a measured Tc of 7 K and 6.5 K calculated for the structure reported by Chen et al., and for Bi-V Tc ~ 8 K measured and 6.8 K calculated. Bi-IV has not been found to be a superconductor, but we have recently predicted a Tc of 4.25 K.

3.
Materials (Basel) ; 4(4): 716-781, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28879948

RESUMO

In this work we review our new methods to computer generate amorphous atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group IV elements like SiC; the GeSe2 chalcogenide; aluminum-based systems: AlN and AlSi, and the CuZr amorphous alloy. We use an ab initio approach based on density functionals and computationally thermally-randomized periodically-continued cells with at least 108 atoms. The computational thermal process to generate the amorphous alloys is the undermelt-quench approach, or one of its variants, that consists in linearly heating the samples to just below their melting (or liquidus) temperatures, and then linearly cooling them afterwards. These processes are carried out from initial crystalline conditions using short and long time steps. We find that a step four-times the default time step is adequate for most of the simulations. Radial distribution functions (partial and total) are calculated and compared whenever possible with experimental results, and the agreement is very good. For some materials we report studies of the effect of the topological disorder on their electronic and vibrational densities of states and on their optical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA