RESUMO
It is essential to hunt for new technologies that promote sustainable practices for agroecosystems; thus, the bioprospecting of beneficial microorganisms complementing with mutation induction techniques to improve their genomic, metabolic, and functional traits is a promising strategy for the development of sustainable microbial inoculants. Bacillus cabrialesii subsp. cabrialesii strain TE3T, a previously recognized plant growth-promoting and biological control agent, was subjected to UV mutation induction to improve these agro-biotechnological traits. Dilutions were made which were spread on Petri dishes and placed under a 20 W UV lamp at 10-min intervals for 60 min. After the UV-induced mutation of this strain, 27 bacterial colonies showed morphological differences compared to the wild-type strain; however, only a strain named TE3T-UV25 showed an improvement in 53.6% of the biocontrol against Bipolaris sorokiniana vs. the wild-type strain, by competition of nutrient and space (only detected in the mutant strain), as well as diffusible metabolites. Furthermore, the ability to promote wheat growth was evaluated by carrying out experiments under specific greenhouse conditions, considering un-inoculated, strain TE3T, and strain TE3T-UV25 treatments. Thus, after 120 days, biometric traits in seedlings were quantified and statistical analyses were performed, which showed that strain TE3T-UV25 maintained its ability to promote wheat growth in comparison with the wild-type strain. On the other hand, using bioinformatics tools such as ANI, GGDC, and TYGS, the Overall Genome Relatedness Index (OGRI) and phylogenomic relationship of mutant strain TE3T-UV25 were performed, confirming that it changed its taxonomic affiliation from B. cabrialesii subsp. cabrialesii to Bacillus subtilis. In addition, genome analysis showed that the mutant, wild-type, and B. subtilis strains shared 3654 orthologous genes; however, a higher number of shared genes (3954) was found between the TE3T-UV25 mutant strain and B. subtilis 168, while the mutant strain shared 3703 genes with the wild-type strain. Genome mining was carried out using the AntiSMASH v7.0 web server and showed that mutant and wild-type strains shared six biosynthetic gene clusters associated with biocontrol but additionally, pulcherriminic acid cluster only was detected in the genome of the mutant strain and Rhizocticin A was exclusively detected in the genome of the wild-type strain. Finally, using the PlaBase tool, differences in the number of genes (17) associated with beneficial functions in agroecosystems were detected in the genome of the mutant vs. wild-type strain, such as biofertilization, bioremediation, colonizing plant system, competitive exclusion, phytohormone, plant immune response stimulation, putative functions, stress control, and biocontrol. Thus, the UV-induced mutation was a successful strategy to improve the bioactivity of B. cabrialesii subsp. cabrialesii TE3T related to the agro-biotecnology applications. The obtained mutant strain, B. subtilis TE3T-UV25, is a promising strain to be further studied as an active ingredient for the bioformulation of bacterial inoculants to migrate sustainable agriculture.
RESUMO
The use of plant growth-promoting bacteria as bioinoculants is a powerful tool to increase crop yield and quality and to improve nitrogen use efficiency (NUE) from fertilizers in plants. This study aimed to bioprospecting a native bacterial consortium (Bacillus cabrialesii subsp. cabrialesii TE3T, Priestia megaterium TRQ8, and Bacillus paralicheniformis TRQ65), through bioinformatic analysis, and to quantify the impact of its inoculation on NUE (measured through 15N-isotopic techniques), grain yield, and grain quality of durum wheat variety CIRNO C2008 grown under three doses of urea (0, 120, and 240 kg N ha-1) during two consecutive agricultural cycles in the Yaqui Valley, Mexico. The inoculation of the bacterial consortium (BC) to the wheat crop, at a total N concentration of 123-225 kg N ha-1 increased crop productivity and maintained grain quality, resulting in a yield increase of 1.1 ton ha-1 (6.0 vs. 7.1 ton ha-1, 0 kg N ha-1 added, 123 kg N ha-1 in the soil) and of 2.0 ton ha-1 (5.9 vs. 7.9 ton ha-1, 120 kg N ha-1 added, 104 kg N ha-1 in the soil) compared to the uninoculated controls at the same doses of N. The genomic bioinformatic analysis of the studied strains showed a great number of biofertilization-related genes regarding N and Fe acquisition, P assimilation, CO2 fixation, Fe, P, and K solubilization, with important roles in agroecosystems, as well as genes related to the production of siderophores and stress response. A positive effect of the BC on NUE at the studied initial N content (123 and 104 kg N ha-1) was not observed. Nevertheless, increases of 14 % and 12.5 % on NUE (whole plant) were observed when 120 kg N ha-1 was applied compared to when wheat was fully fertilized (240 kg N ha-1). This work represents a link between bioinformatic approaches of a native bacterial inoculant and the quantification of its impact on durum wheat.
RESUMO
Strain FSQ1T was isolated from the rhizosphere of the common bean (Phaseolus vulgaris L.) crop sampled in a commercial field located in the Gabriel Leyva Solano community, which belongs to the Guasave municipality (state of Sinaloa, Mexico). Based on its full-length 16S rRNA gene sequence, strain FSQ1T was assigned to the genus Bacillus (100â% similarity). This taxonomic affiliation was supported by its morphological and metabolic traits. Strain FSQ1T was a Gram-stain-positive bacterium with the following characteristics: rod-shaped cells, strictly aerobic, spore forming, catalase positive, reduced nitrate to nitrite, hydrolysed starch and casein, grew in the presence of lysozyme and 2â% NaCl, utilized citrate, grew at pH 6.0-8.0, produced acid from glucose, was unable to produce indoles from tryptophan, and presented biological control against Sclerotinia sclerotiorum. The whole-genome phylogenetic results showed that strain FSQ1T formed an individual clade in comparison with highly related Bacillus species. In addition, the maximum values for average nucleotide identity and from Genome-to-Genome Distance Calculator analysis were 91.57 and 44.20â%, respectively, with Bacillus spizizenii TU-B-10T. Analysis of its fatty acid content showed the ability of strain FSQ1T to produce fatty acids that are not present in closely related Bacillus species, such as C18â:â0 and C20â:â0. Thus, these results provide strong evidence that strain FSQ1T represents a novel species of the genus Bacillus, for which the name Bacillus mexicanus sp. nov. is proposed. The type strain is FSQ1T (CM-CNRG TB51T=LBPCV FSQ1T).
Assuntos
Bacillus , Phaseolus , Ácidos Graxos/química , México , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem BacterianaRESUMO
Bacillus cabrialesii TE3T is a strictly aerobic and Gram-stain-positive plant growth-promoting bacterium, motile and catalase-positive. In addition, strain TE3T was also recently described as a biological control agent. Here, we present the complete circularized genome of this type strain, as well as a whole genome analysis identifying genes of agricultural interest. Thus, a hybrid assembly method was performed using short-read sequencing through the Illumina MiSeq platform, and long-read sequencing through the MinION sequencing technology by Oxford Nanopore Technology (ONT). This assembly method showed a closed circular chromosome of 4,125,766 bp and 44.2% G + C content. The strain TE3T genome annotation, based on the RAST platform, presented 4,282 Coding DNA sequences (CDS) distributed in 335 subsystems, from which 4 CDS are related to the promotion of plant growth and 28 CDS to biological control. Also, Prokka (Rapid Prokaryotic Genome Annotation) predicted a total of 119 RNAs composed of 87 tRNAs, 31 rRNA, and 1 tmRNA; and the PGAP (Prokaryotic Genome Annotation Pipeline) predicted a total of 4,212 genes (3,991 CDS). Additionally, seven putative biosynthetic gene clusters were identified by antiSMASH, such as Fengycin, Bacilysin, Subtilosin A, Bacillibactin, Bacillaene, Surfactin, and Rizocticin A, which are related to antimicrobial and antifungal properties, whose gene presence was further supported by the Prokaryotic Genome Annotation Pipeline (PGAP) annotation. Thus, the complete genome of Bacillus cabrialesii TE3T showed promising bioactivities for the use of this type strain to bioformulate bacterial inoculants for sustainable agriculture.
RESUMO
Strain TSO9 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum) located in the Yaqui, Valley, Mexico. Here, the genome of this strain was sequenced, obtaining a total of 5,248,515 bp; 38.0% G + C content; 1,186,514 bp N50; and 2 L50. Based on the 16S rRNA gene sequencing, strain TSO9 was affiliated with the genus Priestia. The genome annotation of Priestia sp. TSO9 contains a total of 147 RNAs, 128 tRNAs, 1 tmRNA, and 5512 coding DNA sequences (CDS) distributed into 332 subsystems, where CDS associated with agricultural purposes were identified, such as (i) virulence, disease, and defense (57 CDS) (i.e., resistance to antibiotics and toxic compounds (34 CDS), invasion and intracellular resistance (12 CDS), and bacteriocins and ribosomally synthesized antibacterial peptides (10 CDS)), (ii) iron acquisition and metabolism (36 CDS), and (iii) secondary metabolism (4 CDS), i.e., auxin biosynthesis. In addition, subsystems related to the viability of an active ingredient for agricultural bioproducts were identified, such as (i) stress response (65 CDS). These genomic traits are correlated with the metabolic background of this strain, and its positive effects on wheat growth regulation reported in this work. Thus, further investigations of Priestia sp. TSO9 are necessary to complement findings regarding its application in agroecosystems to increase wheat yield sustainably.
RESUMO
The strain denominated TRQ65 was isolated from wheat (Triticum turgidum subsp. durum) commercial fields in the Yaqui Valley, Mexico. Here, we report its draft genome sequence, which presented ~ 4.5 million bp and 45.5% G + C content. Based on the cutoff values on species delimitation established for average nucleotide identity (> 95 to 96%), genome-to-genome distance calculator (> 70%), and the reference sequence alignment-based phylogeny builder method, TRQ65 was strongly affiliated to Bacillus paralicheniformis. The rapid annotation using subsystem technology server revealed that TRQ65 contains genes related to osmotic, and oxidative stress response, as well as auxin biosynthesis (plant growth promotion traits). In addition, antiSMASH and BAGEL revealed the presence of genes involved in lipopeptides and antibiotic biosynthesis. The function of those annotated genes was validated at a metabolic level, observing that strain TRQ65 was able to tolerate saline (91.0%), and water (155.0%) stress conditions, besides producing 28.8 ± 0.9 µg/mL indoles. In addition, strain TRQ65 showed growth inhibition (1.6 ± 0.4 cm inhibition zone) against the causal agent of wheat spot blotch, Bipolaris sorokiniana. Finally, plant-microbe interactions assays confirm the ability of strain TRQ65 to regulate wheat growth, showing a significant increment in shoot height (26%), root length (40%), shoot dry weight (48%), stem diameter (55%), and biovolume index (246%). These findings provide insights for future agricultural studies of this strain.