Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Dev Biol ; 65(4-5-6): 427-437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930367

RESUMO

Regeneration of lost or injured organs is an intriguing process in which numerous cellular events take place to form the new structure. Studies of this process during reconstitution of the intestine have been performed in echinoderms, particularly in holothurians. Many cellular events triggered during regeneration have been described using the sea cucumber Holothuria glaberrima as a research model. More recent experiments have targeted the molecular mechanisms behind the process, a task that has been facilitated by the new sequencing technologies now available. In this review, we present studies involving cellular processes and the genes that have been identified to be associated with the early events of gut regeneration. We also present ongoing efforts to perform functional studies necessary to establish the role(s) of the identified genes. A synopsis of the studies is given with the course of the regenerative process established so far.


Assuntos
Intestinos/crescimento & desenvolvimento , Regeneração , Pepinos-do-Mar , Animais , Pepinos-do-Mar/crescimento & desenvolvimento
2.
Dev Dyn ; 235(12): 3259-67, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17061269

RESUMO

The holothuroid echinoderm Holothuria glaberrima can regenerate its intestine after a process of evisceration. Spherule-containing cells, the spherulocytes, appear to be associated with intestinal regeneration. We have used histochemistry and immunocytochemistry to characterize these cells and their role in the regeneration process. Spherulocytes are 10-20 microm in diameter with an acrocentric nucleus and spherule-like structures within their cytoplasm. They are found in the connective tissue of the intestine and mesentery of noneviscerated and regenerating animals. During the second week of regeneration, the number of spherulocytes in the regenerating intestine increases and a dramatic change in their morphology occurs. Together with the morphological change, the immunohistochemical labeling of the cells also changes; the antibodies not only recognize the spherule structures but also label the cellular cytoplasm in a more homogeneous pattern. Moreover, immunohistochemical labeling also appears to be dispersed within the extracellular matrix, suggesting that the cells are liberating their vesicular contents. Spherulocytes are found in other tissues of H. glaberrima, always associated with the connective tissue component. Our data strongly suggest that spherulocytes are involved in intestinal regeneration but their specific role remains undetermined. In summary, our data expand our knowledge of the cellular events associated with regeneration processes in echinoderms and provide for comparisons with similar processes in vertebrates.


Assuntos
Holothuria/fisiologia , Regeneração/fisiologia , Animais , Histocitoquímica , Holothuria/citologia , Imuno-Histoquímica , Intestinos/citologia , Intestinos/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA