Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39056937

RESUMO

In this study, we work with lattice Gaussian coding for a K-user Gaussian interference channel. Following the procedure of Etkin et al., in which the capacity is found to be within 1 bit/s/Hz of the capacity of a two-user Gaussian interference channel for each type of interference using random codes, we work with lattices to take advantage of their structure and potential for interference alignment. We mimic random codes using a Gaussian distribution over the lattice. Imposing constraints on the flatness factor of the lattices, the common and private message powers, and the channel coefficients, we find the conditions to obtain the same constant gap to the optimal rate for the two-user weak Gaussian interference channel and the generalized degrees of freedom as those obtained with random codes, as found by Etkin et al. Finally, we show how it is possible to extend these results to a K-user weak Gaussian interference channel using lattice alignment.

2.
Sensors (Basel) ; 21(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199300

RESUMO

Jamming attacks in wireless sensor networks (WSNs) scenarios are detrimental to the performance of these networks and affect the security and stability of the service perceived by users. Therefore, the evaluation of the effectiveness of smart environment platforms based on WSNs has to consider the system performance when data collection is executed under jamming attacks. In this work, we propose an experimental testbed to analyze the performance of a WSN using the IEEE 802.15.4 CSMA/CA unslotted mode under jamming attacks in terms of goodput, packet receive rate (PRR), and energy consumption to assess the risk for users and the network in the smart scenario. The experimental results show that constant and reactive jamming strategies severely impact the evaluated performance metrics and the variance' of the received signal strength (RSS) for some signal-to-interference-plus-noise ratio (SINR) ranges. The measurements obtained using the experimental testbed were correlated with analytical models. The results show that in the presence of one interferer, for SINR values higher than 4.5 dB, the PRR is almost 0.99, and the goodput 3.05 Kbps, but the system performance is significantly degraded when the amount of interferers increases. Additionally, the energy efficiency associated with reactive strategies is superior to the constant attack strategy. Finally, based on the evaluated metrics and with the proposed experimental testbed, our findings offer a better understanding of jamming attacks on the sensor devices in real smart scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA