Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32304738

RESUMO

Stress responses in teleosts include the release of hormones into the bloodstream. Their effects depend on the species and on the environmental conditions. The Amazon basin collects waters of diverse chemical composition, and some fish are able to inhabit several of them. However, the effects of these waters on the stress axis are still unknown. Here we show how acute air-exposure differently affects stress biomarkers in tambaqui (Colossoma macropomum), a tropical model species, when acclimated to two Amazonian waters (Rio Negro -RN- water rich in humic acids and poor in ions, and groundwater -IG- with no humic acids and higher concentration of ions). This study described primary and secondary stress responses after air exposure including plasma cortisol, energy metabolites, pH and ions, skin mucus energy metabolites, as well as gills and kidney Na+/K+-ATPase and Na+/H+-exchanger (NHE) activities. Several differences were described in these stress biomarkers due to the acclimation water. The most remarkable ones include increased mucus glucose only in RN-fish, and mucus lactate only in IG-fish after air exposure. Moreover, an inverse relationship between plasma cortisol and Na+ concentrations as well as a direct relationship between plasma ammonia and branchial NHE activity were observed only in RN-fish. Our results demonstrate how important is to study stress responses in fish acclimated to different environments, as physiological differences can be magnified during episodes of high energy expenditure. In addition to having a direct application in aquaculture, this study will improve the management of critical ecosystems such as the Amazon.


Assuntos
Aclimatação , Caraciformes/fisiologia , Estresse Fisiológico , Amônia/metabolismo , Animais , Brasil , Homeostase , Trocadores de Sódio-Hidrogênio/metabolismo , Água/química
2.
J Therm Biol ; 72: 148-154, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29496008

RESUMO

The metabolism of fishes is profoundly affected by environmental factors such as temperature, oxygen concentration, and pH levels. Also, biotic elements, for instance, activity levels of species, have been suggested to affect the energy demand, driving their capacity to support environmental challenges. The present work aims to investigate the effects of the lifestyle and swimming activities levels of fishes living in Amazon forest stream on the aerobic metabolism and thermal tolerance. Intermittent flow respirometry was used to measure routine metabolic rate and thermal maximum metabolic rate with a thermal ramp methodology. Critical thermal tolerance, thermal aerobic scope, and thermal factorial aerobic scope were calculated for twelve species belonging to different families. Our findings showed a correlation between routine and thermal maximum metabolic rate and, between metabolic rate and activity levels. Species belonging to Characidae and Crenuchidae families have high resting metabolic rates, which decrease their factorial aerobic scope and reduce their abilities to cope with warming events. Therefore, these species have low thermal tolerance. Instead, species from families Rivulidae and Cichlidae showed opposite metabolic results and larger thermal windows. We hypothesize that these responses are related to an evolutionary trade-off between lifestyle and energetic requirements and warming will favor species with low activity performance.


Assuntos
Adaptação Fisiológica , Peixes/metabolismo , Natação , Animais , Metabolismo Basal , Brasil , Characidae , Florestas , Temperatura Alta , Consumo de Oxigênio , Especificidade da Espécie
3.
J Fish Biol ; 89(1): 264-79, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27264614

RESUMO

Blood-O2 affinities (P50 ) were measured over a physiologically relevant pH range at 31 (highest temperature average of Rio Negro over the last 8 years), 33 and 35° C for 10 species of the Rio Negro, aiming to test the acute effects of temperature foreseen by the IPCC (Intergovernmental Panel on Climate Change) for coming years. The animals were collected during an expedition to the Anavilhanas Islands of the Rio Negro, 110 km upstream from Manaus (2° 23' 41″ S; 60° 55' 14″ W). Hoplias malabaricus showed higher blood-O2 sensitivity to pH changes (Bohr effect, Φ = Δlog10 P50 ΔpH(-1) ) at both 31° C (Φ = -0·44) and 35° C (Φ = -0·26) compared to Osteoglossum bicirrhosum (Φ = -0·54 at 31° C and Φ = -0·58 at 35° C), but lower P50 under most conditions, and a greater sensitivity of P50 to temperature. Two out of the 10 analysed species had significant increases of P50 (lower blood-O2 affinity) at the highest temperature throughout the pH range tested. For all other species, a minor increase of P50 over the assay-tested temperatures was observed, although all presented a normal Bohr effect. Overall, a diversity of intensities of pH and temperature effects on blood-O2 affinities was observed, which seems to be connected to the biological characteristics of the analysed species. Thermal disturbances in their habitats, likely to occur due to the global warming, would impair blood-O2 binding and unloading in some of the analysed fish species. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Peixes/sangue , Hemoglobinas/metabolismo , Temperatura Alta , Oxigênio/sangue , Animais , Mudança Climática , Concentração de Íons de Hidrogênio , Rios , Temperatura
4.
J Fish Biol ; 89(1): 192-3, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26864975
5.
J Fish Biol ; 76(9): 2118-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20557657

RESUMO

Fish conservation in South America is a pressing issue. The biodiversity of fishes, just as with all other groups of plants and animals, is far from fully known. Continuing habitat loss may result in biodiversity losses before full species diversity is known. In this review, the main river basins of South America (Magdalena, Orinoco, Amazon and Paraná-La Plata system), together with key aquatic habitats (mangrove-fringed estuaries of the tropical humid, tropical semi-arid and subtropical regions) are analysed in terms of their characteristics and main concerns. Habitat loss was the main concern identified for all South American ecosystems. It may be caused by damming of rivers, deforestation, water pollution, mining, poor agricultural practice or inadequate management practice. Habitat loss has a direct consequence, which is a decrease in the availability of living resources, a serious social and economic issue, especially for South American nations which are all developing countries. The introduction of exotic species and overfishing were also identified as widespread across the continent and its main freshwater, coastal and marine ecosystems. Finally, suggestions are made to find ways to overcome these problems. The main suggestion is a change of paradigm and a new design for conservation actions, starting with integrated research and aiming at the co-ordinated and harmonized management of the main transboundary waters of the continent. The actions would be focused on habitat conservation and social rescue of the less well-off populations of indigenous and non-indigenous peoples. Energy and freshwater demands will also have to be rescaled in order to control habitat loss.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Peixes , Animais , Biodiversidade , Pesqueiros , Peixes/genética , Geografia , Rios , América do Sul , Clima Tropical , Poluição da Água
6.
J Fish Biol ; 74(7): 1620-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-20735658

RESUMO

The levels of amylase, maltase, lipase and alkaline protease from eight fish species of the Amazon were analysed. The enzyme levels are not related to fish feeding habits, reflecting their ever-changing habitats and their opportunistic feeding behaviour.


Assuntos
Sistema Digestório/enzimologia , Comportamento Alimentar , Peixes/metabolismo , Amilases , Animais , Endopeptidases , Lipase
7.
Braz J Biol ; 68(3): 571-5, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18833479

RESUMO

The aim of this study was to describe the effect of hypoxia on whole body ion fluxes and hematological parameters in two Amazonian teleosts: Serrasalmus eigenmanni and Metynnis hypsauchen. The increase of Na+ and Cl- effluxes on M. hypsauchen exposed to hypoxia may be related to an increase of gill ventilation and effective respiratory surface area, to avoid a reduction in the oxygen uptake, and/or with the decrease of pHe, that could inhibit Na+ and Cl- transporters and, therefore, reduce influx of these ions. Effluxes of Na+ and Cl- were lower in hypoxia than in normoxia for S. eigenmanni, possibly because in hypoxia this species would reduce gill ventilation and oxygen uptake, which would lead to a decrease of gill ion efflux and, consequently, reducing ion loss. The increase on hematocrit (Ht) during hypoxia in M. hypsauchen probably was caused by an increase of the red blood cell volume (MCV). For S. eigenmanni the increase on glucose possibly results from the usage of glucose reserve mobilization. Metynnis hypsauchen showed to be more sensitive to hypoxia than Serrasalmus eigenmanni, since the first presented more significant alterations on these osmoregulatory and hematological parameters. Nevertheless, the alterations observed for both species are strategies adopted by fishes to preserve oxygen supply to metabolizing tissues during exposure to hypoxia.


Assuntos
Peixes/metabolismo , Hipóxia/metabolismo , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Adaptação Fisiológica , Animais , Peixes/sangue , Hipóxia/sangue , Rios
8.
Aquat Toxicol ; 89(3): 204-6, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18703237

RESUMO

The effects of cadmium exposure on both environment exploration and behavioral responses induced by alarm substance in matrinxã (Brycon amazonicus), a fish species endemic to the Amazon basin, were investigated. Fish exposed to 9.04+/-0.07 microg/L waterborne cadmium for 96h followed by 24h depuration period in clean water, were video-recorded for 15 min, followed by immediate introduction of conspecific skin extract to the tank and a new 30 min period of fish video-recording. Cd-exposed matrinxã showed a significantly lowered locomotor activity (t-test t(12)=2.7; p=0.025) and spatial distribution (t-test t(12)=2.4; p=0.03) relative to the unexposed control fish prior to the alarm substance introduction, and did not present any significant reaction when the skin extract was introduced. The control fish, in opposite, showed a higher level of activity and spatial distribution prior the skin extract contact and significantly decreased their response after the chemical stimulus (locomotion-repeated-measure ANOVA F(1,11)=5.6; p=0.04; spatial distribution F(1,11)=19.4; p=0.001). In conclusion, exposure to a low level of cadmium affects both the environment exploration performance and the conspecific chemical communication in matrinxã. If the reduced environmental exploration performance of Cd-exposed fish is an adjustment to the compromised chemical communication or an independent effect of cadmium is the next step to be investigated.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cádmio/toxicidade , Peixes/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Atividade Motora/efeitos dos fármacos , Distribuição Aleatória , Olfato/efeitos dos fármacos
9.
Braz. j. biol ; Braz. j. biol;68(3): 571-575, Aug. 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-493576

RESUMO

The aim of this study was to describe the effect of hypoxia on whole body ion fluxes and hematological parameters in two Amazonian teleosts: Serrasalmus eigenmanni and Metynnis hypsauchen. The increase of Na+ and Cl- effluxes on M. hypsauchen exposed to hypoxia may be related to an increase of gill ventilation and effective respiratory surface area, to avoid a reduction in the oxygen uptake, and/or with the decrease of pHe, that could inhibit Na+ and Cl- transporters and, therefore, reduce influx of these ions. Effluxes of Na+ and Cl- were lower in hypoxia than in normoxia for S. eigenmanni, possibly because in hypoxia this species would reduce gill ventilation and oxygen uptake, which would lead to a decrease of gill ion efflux and, consequently, reducing ion loss. The increase on hematocrit (Ht) during hypoxia in M. hypsauchen probably was caused by an increase of the red blood cell volume (MCV). For S. eigenmanni the increase on glucose possibly results from the usage of glucose reserve mobilization. Metynnis hypsauchen showed to be more sensitive to hypoxia than Serrasalmus eigenmanni, since the first presented more significant alterations on these osmoregulatory and hematological parameters. Nevertheless, the alterations observed for both species are strategies adopted by fishes to preserve oxygen supply to metabolizing tissues during exposure to hypoxia.


O objetivo deste trabalho foi descrever o efeito da hipoxia no fluxo iônico corporal e nos parâmetros hematológicos em duas espécies de teleósteos da Amazônia: Serrasalmus eigenmanni e Metynnis hypsauchen. O aumento dos efluxos de Na+ e Cl- em M. hypsauchen expostos à hipoxia pode estar relacionado ao aumento da ventilação branquial e da eficiência da área da superfície respiratória, a fim de evitar redução na captação de oxigênio; e/ou com a diminuição do pHe, que pode inibir os transportadores de Na+ e Cl- e, então, reduzir o influxo destes íons. Os efluxos de Na+ e Cl- foram menores em hipoxia do que em normoxia para a espécie S. eigenmanni, possivelmente porque esta espécie em hipoxia poderia reduzir a ventilação branquial e a captação de oxigênio, a qual levaria a uma diminuição do efluxo branquial de íons e, conseqüentemente, à redução da perda de íons. O aumento do hematócrito (Ht) durante hipoxia em M. hypsauchen provavelmente foi causado pelo aumento do volume das células vermelhas do sangue (MCV). Para a espécie S. eigenmanni, o aumento da glicose possivelmente foi resultado do uso da mobilização da reserva de glicose. A espécie Metynnis hypsauchen mostrou ser mais sensível à hipoxia do que a espécie Serrasalmus eigenmanni, uma vez que a primeira espécie apresentou mais alterações significativas em seus parâmetros osmorregulatórios e hematológicos. Contudo, as alterações observadas em ambas as espécies são estratégias adotadas pelos peixes a fim de preservar o suprimento de oxigênio para metabolização nos tecidos durante exposição à hipoxia.


Assuntos
Animais , Hipóxia/metabolismo , Peixes/metabolismo , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Adaptação Fisiológica , Hipóxia/sangue , Peixes/sangue , Rios
10.
Braz. j. biol ; Braz. j. biol;67(4): 657-661, Nov. 2007. graf, tab
Artigo em Inglês | LILACS | ID: lil-474189

RESUMO

Understanding the effects of metal contamination in the Amazon basin is important because of the potential impact on this region of high biodiversity. In addition, the significance of fish as the primary source of protein for the local human population (living either alongside the Amazon River or in the city of Manaus) highlights the need for information on the metal transfer through the food chain. Bioaccumulation of metals in fish can occur at significant rates through the dietary route, without necessarily resulting in death of the organism. The goal of this work was to expose an economic relevant species from the Amazon basin (tambaqui, Colossoma macropomum) to dietary cadmium (Cd) at concentrations of 0, 50, 100, 200, and 400 µg.g-1 dry food. Fish were sampled on days 15, 30, and 45 of the feeding trials. Tissues were collected for analysis of Cd concentration using graphite furnace atomic absorption spectrophotometry. Cd accumulation in the tissues occurred in the following order: kidney > liver > gills > muscle. Relative to other freshwater fish (e.g., rainbow trout, tilapia), tambaqui accumulated remarkably high levels of Cd in their tissues. Although Cd is known to affect Ca2+ homeostasis, no mortality or growth impairment occurred during feeding trials.


O entendimento dos efeitos da contaminação por metais na Bacia Amazônica é importante devido ao potencial impacto sobre esta região de elevada biodiversidade. Além disso, a relevância dos peixes como fonte primária de proteína para a população humana local (tanto nas comunidades ribeirinhas ao longo do rio Amazonas, quanto na cidade de Manaus), ressalta a necessidade de informação sobre a transferência de metais através da cadeia alimentar. Bioacumulação de metais em peixes pode ocorrer em taxas significativas através da dieta, sem necessariamente resultar na morte do indivíduo. O objetivo deste estudo foi expor cronicamente uma espécie de importância comercial nativa da Amazônia (tambaqui, Colossoma macropomum) a dietas enriquecidas com cádmio (Cd) em concentrações de 0, 50, 100, 200, and 400 µg.g-1 alimento seco. Os peixes foram amostrados nos dias 15, 30 e 45 do tratamento experimental. Os tecidos foram coletados para análise quanto a concentração de Cd por meio de espectrofotometria de absorção atômica acoplado a forno de grafite. O acúmulo de Cd nos tecidos ocorreu na seguinte ordem: rim > fígado > brânquias > músculo. Comparando-se com outras espécies de peixes de água doce (por exemplo, truta arco-íris, tilápia), o tambaqui acumulou níveis de Cd extremamente mais elevados em seus tecidos. Apesar do Cd ser conhecido por afetar a homeostase do Ca2+, não houve mortalidade ou retardo no crescimento durante os testes dietários.


Assuntos
Animais , Humanos , Cádmio/análise , Dieta , Peixes/metabolismo , Poluentes Químicos da Água/análise , Brasil , Cádmio/farmacocinética , Espectrofotometria Atômica , Fatores de Tempo , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
11.
Braz J Biol ; 67(4): 657-61, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18278317

RESUMO

Understanding the effects of metal contamination in the Amazon basin is important because of the potential impact on this region of high biodiversity. In addition, the significance of fish as the primary source of protein for the local human population (living either alongside the Amazon River or in the city of Manaus) highlights the need for information on the metal transfer through the food chain. Bioaccumulation of metals in fish can occur at significant rates through the dietary route, without necessarily resulting in death of the organism. The goal of this work was to expose an economic relevant species from the Amazon basin (tambaqui, Colossoma macropomum) to dietary cadmium (Cd) at concentrations of 0, 50, 100, 200, and 400 microg.g-1 dry food. Fish were sampled on days 15, 30, and 45 of the feeding trials. Tissues were collected for analysis of Cd concentration using graphite furnace atomic absorption spectrophotometry. Cd accumulation in the tissues occurred in the following order: kidney > liver > gills > muscle. Relative to other freshwater fish (e.g., rainbow trout, tilapia), tambaqui accumulated remarkably high levels of Cd in their tissues. Although Cd is known to affect Ca2+ homeostasis, no mortality or growth impairment occurred during feeding trials.


Assuntos
Cádmio/análise , Dieta , Peixes/metabolismo , Poluentes Químicos da Água/análise , Animais , Brasil , Cádmio/farmacocinética , Humanos , Espectrofotometria Atômica , Fatores de Tempo , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
12.
Comp Biochem Physiol B Biochem Mol Biol ; 141(3): 347-55, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15950510

RESUMO

The effects of graded hypoxia on the physiological and biochemical responses were examined in two closely related species of cichlids of the Amazon: Astronotus crassipinnis and Symphysodon aequifasciatus. Ten fish of each species were exposed to graded hypoxia for 8 h in seven oxygen concentrations (5.92, 3.15, 1.54, 0.79, 0.60, 0.34, and 0.06 mg O(2) L(-)(1)), with the aim to evaluate hypoxia tolerance and metabolic adjustments, where plasma glucose and lactate levels, hepatic and muscle glycogen contents, and maximum enzyme activities (PK, LDH, MDH and CS) in skeletal and cardiac muscles were measured. Another experimental set was done to quantify oxygen consumption (MO(2)) and opercular movements in two oxygen concentrations. Hypoxia tolerance differed between the two species. Astronotus crassipinnis was able to tolerate anoxia for 178 min while S. aequifasciatus was able to withstand 222 min exposure in deep hypoxia (0.75 mg O(2) L(-)(1)). Suppressed MO(2) was observed during exposure to 0.34 (A. crassipinnis) and 0.79 mg O(2) L(-)(1) (S. aequifasciatus), while opercular movements increased in both species exposed to hypoxia. Higher levels of muscle and liver glycogen and larger hypoxia-induced increases in plasma glucose and lactate were observed in A. crassipinnis, which showed a higher degree of hypoxia tolerance. Changes in enzyme levels were tissue-specific and differed between species suggesting differential abilities in down-regulating oxidative pathways and increasing anaerobic metabolism. Based on the present data, we conclude that these animals are good anaerobes and highly adapted to their environment, which is allowed by their abilities to regulate metabolic pathways and adjust their enzyme levels.


Assuntos
Adaptação Fisiológica , Ciclídeos/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Limiar Anaeróbio , Animais , Ciclídeos/classificação , Glicogênio/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Malato Desidrogenase/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio
14.
J Exp Biol ; 207(Pt 19): 3381-90, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15326214

RESUMO

Environmental hypercapnia induces a respiratory acidosis that is usually compensated within 24-96 h in freshwater fish. Water ionic composition has a large influence on both the rate and degree of pH recovery during hypercapnia. Waters of the Amazon are characteristically dilute in ions, which may have consequences for acid-base regulation during environmental hypercapnia in endemic fishes. The armoured catfish Liposarcus pardalis, from the Amazon, was exposed to a water P(CO(2)) of 7, 14 or 42 mmHg in soft water (in micromol l(-1): Na(+), 15, Cl(-), 16, K(+), 9, Ca(2+), 9, Mg(2+), 2). Blood pH fell within 2 h from a normocapnic value of 7.90+/-0.03 to 7.56+/-0.04, 7.34+/-0.05 and 6.99+/-0.02, respectively. Only minor extracellular pH (pH(e)) recovery was observed in the subsequent 24-96 h. Despite the pronounced extracellular acidosis, intracellular pH (pH(i)) of the heart, liver and white muscle was tightly regulated within 6 h (the earliest time at which these parameters were measured) via a rapid accumulation of intracellular HCO(3)(-). While most fish regulate pH(i) during exposure to environmental hypercapnia, the time course for this is usually similar to that for pH(e) regulation. The degree of extracellular acidosis tolerated by L. pardalis, and the ability to regulate pH(i) in the face of an extracellular acidosis, are the greatest reported to date in a teleost fish. The preferential regulation of pH(i) in the face of a largely uncompensated extracellular acidosis in L. pardalis is rare among vertebrates, and it is not known whether this is associated with the ability to air-breathe and tolerate aerial exposure, or living in water dilute in counter ions, or with other environmental or evolutionary selective pressures. The ubiquity of this strategy among Amazonian fishes and the mechanisms employed by L. pardalis are clearly worthy of further study.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Acidose Respiratória/metabolismo , Dióxido de Carbono/sangue , Peixes-Gato/fisiologia , Análise de Variância , Animais , Brasil , Dióxido de Carbono/análise , Peixes-Gato/sangue , Peixes-Gato/metabolismo , Água Doce/análise , Concentração de Íons de Hidrogênio , Fígado/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Contagem de Cintilação , Radioisótopos de Sódio , Fatores de Tempo
15.
Braz. j. biol ; Braz. j. biol;62(4b): 749-752, Nov. 2002. graf
Artigo em Inglês | LILACS | ID: lil-339373

RESUMO

The aim of this study was to investigate the effect on an increase of temperature on the net ion fluxes on Metynnis hypsauchen, a teleost species from the Rio Negro. Fish were collected in the Anavilhanas archipelago, Rio Negro, Amazon. After 24 h adaptation fish were placed in individual chambers served with a steady flow of recirculated water. Na+ and Cl- fluxes were determined at 26 and 33ºC. After 18 h in the chambers, fish presented an influx of Na+ and Cl-, and the temperature raise to 33ºC led to an efflux of both ions, which remained even after 6 h in this temperature. Six hours were not enough to promote a significant reduction of net ion effluxes, but certainly the fluxes would be in net balance after a longer period of time, since this species can be exposed to this temperature in its natural environment


Assuntos
Animais , Peixes , Temperatura Alta , Canais de Potássio , Canais de Sódio , Adaptação Fisiológica , Peixes , Água Doce
16.
Braz J Med Biol Res ; 35(3): 361-7, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11887215

RESUMO

The present study analyzes Na+ and K+ disturbances caused by low pH in two catfish species from the Amazon River. Corydoras adolfoi inhabits ion-poor, black-stained, low pH (3.5-4.0) waters, while C. schwartzi is native to ion-rich waters at circumneutral pH. Fish were exposed to pH 3.5 Ca2+-free, and Ca2+-enriched (approximately 500 micromol/l) water to determine the protective effects of calcium. Net Na+ and K+ fluxes were measured in the water collected from the fish experimental chambers. C. adolfoi was unable to control the Na+ efflux at low pH, exhibiting Na+ loss up to -594 +/- 84 nmol g(-1) h(-1) during the first hour. After 3 and 6 h, net Na+ flux increased by 7- and 23-fold, respectively. In C. schwartzi, at pH 3.5, the initial high Na+ loss (-1,063 +/- 73 nmol g(-1) h(-1)) was gradually attenuated. A K+ loss occurred in both species, but remained relatively constant throughout exposure. High [Ca2+] affected ion losses in both species. C. adolfoi had 70% loss attenuation, indicating incapacity to control Na+ efflux. In C. schwartzi, elevated [Ca2+] completely prevented the Na+ losses caused by exposure to low pH. Rather different patterns were seen for K+ fluxes, with C. adolfoi showing no K+ disruption when exposed to low pH/high [Ca2+]. Thus, C. adolfoi loses Na+ during acid exposure, but has the ability to control K+ loss, while C. schwartzi controls diffusive Na+ loss but exhibits a slightly higher K+ loss. Ion balance was influenced by [Ca2+] at low pH in C. schwartzi but not in C. adolfoi.


Assuntos
Cálcio/metabolismo , Peixes-Gato/fisiologia , Água Doce/química , Potássio/metabolismo , Sódio/metabolismo , Equilíbrio Ácido-Base , Adaptação Fisiológica , Animais , Brasil , Cálcio/análise , Meio Ambiente , Exposição Ambiental , Concentração de Íons de Hidrogênio , Potássio/análise , Sódio/análise
17.
Physiol Biochem Zool ; 75(1): 37-47, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11880976

RESUMO

We measured unidirectional ion fluxes of fish collected directly from the Rio Negro, an extremely dilute, acidic blackwater tributary of the Amazon. Kinetic analysis of Na(+) uptake revealed that most species had fairly similar J(max) values, ranging from 1,150 to 1,750 nmol g(-1) h(-1), while K(m) values varied to a greater extent. Three species had K(m) values <33 micromol L(-1), while the rest had K(m) values >or=110 micromol L(-1). Because of the extremely low Na(+) concentration of Rio Negro water, the differences in K(m) values yield very different rates of Na(+) uptake. However, regardless of the rate of Na(+) uptake, measurements of Na(+) efflux show that Na(+) balance was maintained at very low Na(+) levels (<50 micromol L(-1)) by most species. Unlike other species with high K(m) values, the catfish Corydoras julii maintained high rates of Na(+) uptake in dilute waters by having a J(max) value at least 100% higher than the other species. Corydoras julii also demonstrated the ability to modulate kinetic parameters in response to changes in water chemistry. After 2 wk in 2 mmol L(-1) NaCl, J(max) fell >50%, and K(m) dropped about 70%. The unusual acclimatory drop in K(m) may represent a mechanism to ensure high rates of Na(+) uptake on return to dilute water. As well as being tolerant of extremely dilute waters, Rio Negro fish generally were fairly tolerant of low pH. Still, there were significant differences in sensitivity to pH among the species on the basis of degree of stimulation of Na(+) efflux at low pH. There were also differences in sensitivity to low pH of Na(+) uptake, and two species maintained significant rates of uptake even at pH 3.5. When fish were exposed to low pH in Rio Negro water instead of deionized water (with the same concentrations of major ions), the effects of low pH were reduced. This suggests that high concentrations of dissolved organic molecules in the water, which give it its dark tea color, may interact with the branchial epithelium in some protective manner.


Assuntos
Adaptação Fisiológica/fisiologia , Peixes/fisiologia , Água Doce/química , Transporte de Íons/fisiologia , Água/química , Animais , Brasil , Peixes-Gato/fisiologia , Ciclídeos/fisiologia , Meio Ambiente , Peixes/metabolismo , Concentração de Íons de Hidrogênio , Sódio/metabolismo , Isótopos de Sódio
18.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;35(3): 361-367, Mar. 2002. ilus
Artigo em Inglês | LILACS | ID: lil-304664

RESUMO

The present study analyzes Na + and K + disturbances caused by low pH in two catfish species from the Amazon River. Corydoras adolfoi inhabits ion-poor, black-stained, low pH (3.5-4.0) waters, while C. schwartzi is native to ion-rich waters at circumneutral pH. Fish were exposed to pH 3.5 Ca2 + - free, and Ca2 + - enriched (approximately 500 mu mol/l) water to determine the protective effects of calcium. Net Na+ and K+ fluxes were measured in the water collected from the fish experimental chambers. C. adolfoi was unable to control the Na+ efflux at low pH, exhibiting Na+ loss up to -594 ± 84 nmol g-1 h-1 during the first hour. After 3 and 6 h, net Na+ flux increased by 7- and 23-fold, respectively. In C. schwartzi, at pH 3.5, the initial high Na+ loss (-1,063 ± 73 nmol g-1 h-1) was gradually attenuated. A K+ loss occurred in both species, but remained relatively constant throughout exposure. High [Ca2+] affected ion losses in both species. C. adolfoi had 70 percent loss attenuation, indicating incapacity to control Na+ efflux. In C. schwartzi, elevated [Ca2+] completely prevented the Na+ losses caused by exposure to low pH. Rather different patterns were seen for K+ fluxes, with C. adolfoi showing no K+ disruption when exposed to low pH/high [Ca2+]. Thus, C. adolfoi loses Na+ during acid exposure, but has the ability to control K+ loss, while C. schwartzi controls diffusive Na+ loss but exhibits a slightly higher K+ loss. Ion balance was influenced by [Ca2+] at low pH in C. schwartzi but not in C. adolfoi


Assuntos
Animais , Cálcio , Peixes-Gato , Água Doce , Potássio , Sódio , Equilíbrio Ácido-Base , Adaptação Fisiológica , Brasil , Meio Ambiente , Exposição Ambiental , Concentração de Íons de Hidrogênio
19.
Braz J Biol ; 62(4B): 749-52, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12659025

RESUMO

The aim of this study was to investigate the effect on an increase of temperature on the net ion fluxes on Metynnis hypsauchen, a teleost species from the Rio Negro. Fish were collected in the Anavilhanas archipelago, Rio Negro, Amazon. After 24 h adaptation fish were placed in individual chambers served with a steady flow of recirculated water. Na+ and Cl- fluxes were determined at 26 and 33 degrees C. After 18 h in the chambers, fish presented an influx of Na+ and Cl-, and the temperature raise to 33 degrees C led to an efflux of both ions, which remained even after 6 h in this temperature. Six hours were not enough to promote a significant reduction of net ion effluxes, but certainly the fluxes would be in net balance after a longer period of time, since this species can be exposed to this temperature in its natural environment.


Assuntos
Peixes/metabolismo , Temperatura Alta , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Adaptação Fisiológica , Animais , Peixes/fisiologia , Água Doce
20.
Artigo em Inglês | MEDLINE | ID: mdl-10840217

RESUMO

Fish are dependent on aerobic metabolism. They respond to changes in oxygen availability by a wide spectrum of compensatory and respiratory adjustments to safeguard tissue oxygenation. Such adjustments are directed to facilitate both oxygen uptake at the gas exchange surfaces and oxygen unloading to tissues. The importance of erythrocytic organic phosphates as regards oxygen transfer has been recognised since 1967 when the 'dramatic' effect of 2,3DPG on human haemoglobin was first reported. The present review examines the appearance of all the major erythrocytic organic phosphates during the evolutionary radiation of fish. In addition, it provides examples illustrating qualitative and quantitative ontogenetic changes of organic phosphates in the red blood cell of several fish species and describes their effects on oxygen affinities. The interaction of the organic phosphates with haemoglobins and divalent cations are also examined. Of particular interest is the regulation of erythrocytic organic phosphates according to both environmental and physiological conditions.


Assuntos
Eritrócitos/metabolismo , Peixes/sangue , Compostos Organofosforados/sangue , Animais , Peixes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA