Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 427: 136720, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37423046

RESUMO

This work evaluates the effect of high-energy mechanical milling time (7 levels, 20-80 min) on amylose content, crystallinity pattern, temperature and gelatinization enthalpy, morphology, and rheological properties of chayotextle (Sechium edule Sw.) starch. After 30 min of milling, granular structure was affected, and amylose values were the highest while crystallinity and gelatinization enthalpy decreased significantly. These changes allowed to obtain gels with viscoelastic properties where the elastic character (Ç´) prevailed upon the viscous modulus (Ǵ́). Native starch showed Tan δ values of 0.6, increased significantly (0.9) after 30 min of milling due to the surge in linear chains (amylose) and loss of granular structure. Native and modified starches showed high dependence on cutting or shear speed, presenting a non-Newtonian behavior (reofluidizers). These results indicate that mechanical grinding is an alternative to obtain modified starches with applications in the food industry.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Viscosidade , Temperatura , Termodinâmica , Reologia
2.
Plant Foods Hum Nutr ; 64(1): 18-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19153833

RESUMO

The use of pigmented maize varieties has increased due to their high anthocyanins content, but very few studies are reported about the starch properties of these grains. The aim of this work was to isolate the starch granules from pigmented blue maize and carry out the morphological, physicochemical, and biochemical characterization studies. The proximate composition of starch granules showed high protein contents, after purification, the blue maize starch presented lower protein amount than starch from white maize (control). Although the purity of starch granules was increased, the damaged starch (determined for the Maltase cross absence) was also increased. Scanning electron microscopy showed the presence of some pores and channels in the blue maize starch. The electrophoretic protein profiles showed differences in the bands that correspond to the enzymes involved in the starch biosynthesis; these differences could explain the variation in morphological characteristics of blue maize starches against starch from white maize.


Assuntos
Sintase do Amido/metabolismo , Amido/metabolismo , Zea mays/enzimologia , Zea mays/ultraestrutura , Eletroforese em Gel Bidimensional , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Plantas Geneticamente Modificadas , Amido/análise , Amido/ultraestrutura , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA