Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37374617

RESUMO

In this work, we fabricated and characterized ZnO and TiO2 thin films, determining their structural, optical, and morphological properties. Furthermore, we studied the thermodynamics and kinetics of methylene blue (MB) adsorption onto both semiconductors. Characterization techniques were used to verify thin film deposition. The semiconductor oxides reached different removal values, 6.5 mg/g (ZnO) and 10.5 mg/g (TiO2), after 50 min of contact. The pseudo-second-order model was suitable for fitting the adsorption data. ZnO had a greater rate constant (45.4 × 10-3) than that of TiO2 (16.8 × 10-3). The removal of MB by adsorption onto both semiconductors was an endothermic and spontaneous process. Finally, the stability of the thin films showed that both semiconductors maintained their adsorption capacity after five consecutive removal tests.

2.
Front Behav Neurosci ; 5: 82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22203795

RESUMO

Working memory (WM) is a memory system responsible for the temporary storage of information and its utilization in problem solving. The central executive is theorized as the controller of storage functions that support WM. Neurophysiological data suggest that electroencephalographic (EEG) theta and alpha oscillations in frontal and midline regions are involved in neural communication between the central executive and storage functions during WM performance. Emotion is known to modulate several memory systems, including WM, through central and peripheral pathways. However, the physiological effect (EEG; autonomic nervous activity) of emotion over WM are not well described. In this study we aimed to identify physiological responses related to emotional WM performance. EEG (21 channels), heart rate (HR), and galvanic skin response (GSR) recordings were obtained from 54 volunteers while performing delayed matching and non-matching to sample tasks (DMTS/DNMTS). Emotional and neutral pictures from the International Affective Picture System and geometric figures were used as stimuli. As expected, WM performance was accompanied by presence of theta (frontal and midline electrodes) and alpha power (parietal electrodes). Beta and gamma oscillations were concentrated in frontopolar and left temporal regions. The DNMTS task was accompanied by higher increases in beta power, HR, and GSR compared to the DMTS task. Correlation analyses showed a positive tendency for gamma in the Fp2 site, ratio of LF/HF and skin conductance in both tasks. The HR results indicate an inverse reaction related to parasympathetic and sympathetic nervous system during the performance of the tasks. Taken together, our results contribute to elucidate the complex interactions between central and autonomic nervous systems in the modulation of emotional WM tasks.

3.
Front Behav Neurosci ; 5: 35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747764

RESUMO

Emotional content/context enhances declarative memory through modulation of encoding and retrieval mechanisms. At encoding, neurophysiological data have consistently demonstrated the subsequent memory effect in theta and gamma oscillations. Yet, the existing studies were focused on the emotional content effect and let the emotional context effect unexplored. We hypothesized that theta and gamma oscillations show higher evoked/induced activity during the encoding of visual stimuli when delivered in an emotionally arousing context. Twenty-five healthy volunteers underwent evoked potentials (EP) recordings using a 21 scalp electrodes montage. They attended to an audiovisual test of emotional declarative memory being randomly assigned to either emotionally arousing or neutral context. Visual stimulus presentation was used as the time-locking event. Grand-averages of the EP and evoked spectral perturbations were calculated for each volunteer. EP showed a higher negative deflection from 80 to 140 ms for the emotional condition. Such effect was observed over central, frontal and prefrontal locations bilaterally. Evoked theta power was higher in left parietal, central, frontal, and prefrontal electrodes from -50 to 300 ms in the emotional condition. Evoked gamma power was higher in the emotional condition with a spatial distribution that overlapped at some points with the theta topography. The early theta power increase could be related to expectancy induced by auditory information processing that facilitates visual encoding in emotional contexts. Together, our results suggest that declarative memory enhancement for both emotional content and emotional context are supported by similar neural mechanisms at encoding, and offer new evidence about the brain processing of relevant environmental stimuli.

4.
Arq Neuropsiquiatr ; 66(3B): 636-40, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18949254

RESUMO

Reduction of excitability of the dominant primary motor cortex (M1) improves ipsilateral hand function in healthy subjects. In analogy, inhibition of non-dominant M1 should also improve ipsilateral performance. In order to investigate this hypothesis, we have used slow repetitive transcranial magnetic stimulation (rTMS) and the Purdue Pegboard test. Twenty-eight volunteers underwent 10 minutes of either 0.5Hz rTMS over right M1 or sham rTMS (coil perpendicular to scalp). The motor task was performed before, immediately after, and 20 minutes after rTMS. In both groups, motor performance improved significantly throughout the sessions. rTMS inhibition of the non-dominant M1 had no significant influence over ipsilateral or contralateral manual dexterity, even though the results were limited by unequal performance between groups at baseline. This is in contrast to an improvement in left hand function previously described following slow rTMS over left M1, and suggests a less prominent physiological transcallosal inhibition from right to left M1.


Assuntos
Lateralidade Funcional/fisiologia , Mãos/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Humanos , Masculino , Adulto Jovem
5.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;66(3b): 636-640, set. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-495525

RESUMO

Reduction of excitability of the dominant primary motor cortex (M1) improves ipsilateral hand function in healthy subjects. In analogy, inhibition of non-dominant M1 should also improve ipsilateral performance. In order to investigate this hypothesis, we have used slow repetitive transcranial magnetic stimulation (rTMS) and the Purdue Pegboard test. Twenty-eight volunteers underwent 10 minutes of either 0.5Hz rTMS over right M1 or sham rTMS (coil perpendicular to scalp). The motor task was performed before, immediately after, and 20 minutes after rTMS. In both groups, motor performance improved significantly throughout the sessions. rTMS inhibition of the non-dominant M1 had no significant influence over ipsilateral or contralateral manual dexterity, even though the results were limited by unequal performance between groups at baseline. This is in contrast to an improvement in left hand function previously described following slow rTMS over left M1, and suggests a less prominent physiological transcallosal inhibition from right to left M1.


A redução da excitabilidade do córtex motor primário (M1) dominante melhora o desempenho manual ipsilateral: a inibição do M1 não-dominante poderia, analogamente, aprimorar a função manual direita. Para investigar esta hipótese, utilizou-se a estimulação magnética transcraniana repetitiva (EMTr) de baixa frequência e o teste Purdue Pegboard. Submetemos 28 voluntários a 10 minutos de EMTr sobre o M1 direito (0,5 Hz) ou a EMTr placebo (bobina perpendicular ao escalpo). O teste foi executado antes, imediatamente após e 20 minutos após a EMTr. Nos dois grupos, o desempenho manual mostrou significativa melhora entre as sessões. A inibição do M1 não-dominante não influenciou significativamente a destreza motora ipsi ou contralateral, apesar da conclusão limitada pelo desempenho discrepante dos grupos na primeira sessão. Este resultado contrasta com a melhora da função manual esquerda descrita após a EMTr sobre o M1 esquerdo e sugere uma inibição transcalosa fisiológica menos intensa do M1 direito para o esquerdo.


Assuntos
Adolescente , Adulto , Humanos , Masculino , Adulto Jovem , Lateralidade Funcional/fisiologia , Mãos/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA