Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 10: 86, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21605416

RESUMO

BACKGROUND: The rat has been a mainstay of physiological and metabolic research, and more recently mice. This study aimed at characterizing the postprandial triglyceride profile of two members of the Muridae family: the Wistar rats (Rattus norvegicus albinus) and C57BL/6 mice (Mus musculus) plus comparing them to the profile obtained in humans. METHODS: Thirty-one male and twelve female Wistar rats, ten C57BL/6 male and nine female mice received a liquid meal containing fat (17%), protein (4%) and carbohydrates (4%), providing 2 g fat/Kg. Thirty-one men and twenty-nine women received a standardized liquid meal containing fat (25%), dextromaltose (55%), protein (14%), and vitamins and minerals (6%), and providing 40 g of fat per square meter of body surface. Serial blood samples were collected at 2, 4, 6, 8 and 10 h after the ingestion in rats, at 1, 2, 3, 4, 5 and 6 h in mice and in humans at 2, 4, 6 and 8 h. Wilcoxon and Mann-Whitney tests were used. RESULTS/DISCUSSION: The triglyceride responses were evaluated after the oral fat loads. Fasting and postprandial triglyceridemia were determined sequentially in blood sample. AUC, AUIC, AR, RR and late peaks were determined. CONCLUSIONS: Rats are prone to respond in a pro-atherogenic manner. The responses in mice were closer to the ones in healthy men. This study presents striking differences in postprandial triglycerides patterns between rats and mice not correlated to baseline triglycerides, the animal baseline body weight or fat load in all animal groups.


Assuntos
Hiperlipidemias/fisiopatologia , Período Pós-Prandial/fisiologia , Animais , Feminino , Humanos , Hiperlipidemias/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Triglicerídeos/sangue
2.
Lipids Health Dis ; 10: 87, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21609439

RESUMO

BACKGROUND: The relationship between CETP and postprandial hyperlipemia is still unclear. We verified the effects of varying activities of plasma CETP on postprandial lipemia and precocious atherosclerosis in asymptomatic adult women. METHODS: Twenty-eight women, selected from a healthy population sample (n = 148) were classified according to three CETP levels, all statistically different: CETP deficiency (CETPd ≤ 4.5%, n = 8), high activity (CETPi ≥ 23.8, n = 6) and controls (CTL, CETP ≥ 4.6% and ≤ 23.7%, n = 14). After a 12 h fast they underwent an oral fat tolerance test (40 g of fat/m² of body surface area) for 8 hours. TG, TG-rich-lipoproteins (TRL), cholesterol and TRL-TG measurements (AUC, AUIC, AR, RR and late peaks) and comparisons were performed on all time points. Lipases and phospholipids transfer protein (PLTP) were determined. Correlation between carotid atherosclerosis (c-IMT) and postprandial parameters was determined. CETP TaqIB and I405V and ApoE-ε3/ε2/ε4 polymorphisms were examined. To elucidate the regulation of increased lipemia in CETPd a multiple linear regression analysis was performed. RESULTS: In the CETPi and CTL groups, CETP activity was respectively 9 and 5.3 higher compared to the CETPd group. Concentrations of all HDL fractions and ApoA-I were higher in the CETPd group and clearance was delayed, as demonstrated by modified lipemia parameters (AUC, AUIC, RR, AR and late peaks and meal response patterns). LPL or HL deficiencies were not observed. No genetic determinants of CETP deficiency or of postprandial lipemia were found. Correlations with c-IMT in the CETPd group indicated postprandial pro-atherogenic associations. In CETPd the regression multivariate analysis (model A) showed that CETP was largely and negatively predicted by VLDL-C lipemia (R² = 92%) and much less by TG, LDL-C, ApoAI, phospholipids and non-HDL-C. CETP (model B) influenced mainly the increment in ApoB-100 containing lipoproteins (R² = 85% negatively) and phospholipids (R² = 13%), at the 6(th)h point. CONCLUSION: The moderate CETP deficiency phenotype included a paradoxically high HDL-C and its sub fractions (as earlier described), positive associations with c-IMT, a postprandial VLDL-C increment predicting negatively CETP activity and CETP activity regulating inversely the increment in ApoB100-containing lipoproteins. We hypothesize that the enrichment of TG content in triglyceride-rich ApoB-containing lipoproteins and in TG rich remnants increases lipoproteins' competition to active lipolysis sites,reducing their catabolism and resulting on postprandial lipemia with atherogenic consequences.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , Hiperlipidemias/complicações , Hiperlipidemias/fisiopatologia , Período Pós-Prandial/fisiologia , Adulto , Área Sob a Curva , Aterosclerose/sangue , Aterosclerose/complicações , Estudos de Casos e Controles , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Jejum/sangue , Feminino , Genótipo , Humanos , Hiperlipidemias/sangue , Pessoa de Meia-Idade , Análise Multivariada , Polimorfismo de Nucleotídeo Único/genética , Túnica Íntima/patologia , Túnica Média/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA