Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ergonomics ; 66(4): 492-505, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35766283

RESUMO

The negative effect of prolonged cognitive demands on psychomotor skills in athletes has been demonstrated. Transcranial direct current stimulation (tDCS) could be used to mitigate this effect. This study examined the effects of tDCS over the left dorsolateral prefrontal cortex (DLPFC) during a 30-min inhibitory Stroop task on cognitive and shooting performances of professional female basketball players. Following a randomised, double-blinded, sham-controlled, cross-over design, players were assigned to receive anodal tDCS (a-tDCS, 2 mA for 20 min) or sham-tDCS in two different sessions. Data from 8 players were retained for analysis. Response Time decreased significantly over time (p < 0.001; partial η2 = 0.44; no effect of condition, or condition vs. time interaction). No difference in mean accuracy and shooting performance was observed between tDCS conditions. The results suggest that a-tDCS exert no additional benefits in reducing the negative effects of prolonged cognitive demands on technical performance compared to sham (placebo).Practitioner summary: Prolonged cognitive demands can negatively affect the athletes' performance. We tested whether transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) could attenuate these effects on cognitive and shooting performance in professional female basketball players. However, tDCS did not exert any additional benefits compared to sham.Abbreviations: tDCS: transcranial direct current stimulation; a-tDCS: anodal transcranial direct current stimulation; PFC: prefrontal cortex; DLPFC: dorsolateral prefrontal cortex; PCT: prolonged cognitive task; TT: time trial; RT: response time; NASA-TLX: National Aeronautics and Space Administration Task Load Index; RPE: ratings of perceived exertion; CR-10 scale: category rating scale; EEG: electroencephalogram; AU: arbitrary units.


Assuntos
Basquetebol , Estimulação Transcraniana por Corrente Contínua , Feminino , Humanos , Cognição/fisiologia , Eletroencefalografia , Córtex Pré-Frontal/fisiologia , Estudos Cross-Over , Interação do Duplo Vínculo
2.
Sci Rep ; 11(1): 13911, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230503

RESUMO

Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called "conventional" tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg-1 min-1) were enrolled in this single-center, randomized, crossover, and sham-controlled trial. To test reliability, participants performed two time to exhaustion (TTE) tests (control conditions) on a cycle simulator with 80% of peak power until volitional exhaustion. Next, they randomly received HD-tDCS (2.4 mA), conventional (2.0 mA), or active sham tDCS (2.0 mA) over the motor cortex for 20-min before performing the TTE test. TTE, heart rate (HR), associative thoughts, peripheral (lower limbs), and whole-body ratings of perceived exertion (RPE) were recorded every minute. Outcome measures were reliable. There was no difference in TTE between HD-tDCS (853.1 ± 288.6 s), simulated conventional (827.8 ± 278.7 s), sham (794.3 ± 271.2 s), or control conditions (TTE1 = 751.1 ± 261.6 s or TTE2 = 770.8 ± 250.6 s) [F(1.95; 21.4) = 1.537; P = 0.24; η2p = 0.123]. There was no effect on peripheral or whole-body RPE and associative thoughts (P > 0.05). No serious adverse effect was reported. A single session of neither HD-tDCS nor conventional tDCS changed exercise performance and psychophysiological responses in athletes, suggesting that a ceiling effect may exist.


Assuntos
Atletas/psicologia , Resistência Física/fisiologia , Psicofisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Frequência Cardíaca/fisiologia , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Reprodutibilidade dos Testes , Sensação/fisiologia , Adulto Jovem
3.
Percept Mot Skills ; 128(4): 1504-1529, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34056967

RESUMO

This study investigated the effect of transcranial direct current stimulation (tDCS) combined with a recovery training session on the well-being and self-perceived recovery of professional female soccer players after official matches. Data from 13 world-class players were analyzed after participating in four official soccer matches of the first division of the Brazilian Women's Soccer Championship (7-, 10-, and 13-day intervals). We applied anodal tDCS (a-tDCS) over the left dorsolateral prefrontal cortex with 2 mA for 20 minutes (+F3/-F4 montage) the day after each match. Participants underwent two randomly ordered sessions of a-tDCS or sham. Players completed the Well-Being Questionnaire (WBQ) and the Total Quality Recovery (TQR) scale before each experimental condition and again the following morning. A two-way repeated-measures ANOVA showed a significant time x condition interaction on the WBQ (F(1,11)=5.21; p=0.043; ηp2=0.32), but not on the TQR (F(1,12) = 0.552; p = 0.47; ηp2 = 0.044). There was a large effect size (ES) for a-tDCS for the WBQ score (ES = 1.02; 95%CI = 0.17;1.88), and there was a moderate WBQ score increase (ES = 0.53; 95%CI = -0.29;1.34) for the sham condition. We found similar increases in the TQR score for a-tDCS (ES = 1.50; 95%CI = 0.63-2.37) and the sham condition (ES = 1.36; 95%CI = 0.51-2.22). These results suggest that a-tDCS (+F3/-F4 montage) combined with a recovery training session may slightly improve perceived well-being beyond the level of improvement after only the recovery training session among world-class female soccer players. Prior to widely adopting this recovery approach, further study is needed with larger and more diverse samples, including for female teams of different performance levels.


Assuntos
Futebol , Estimulação Transcraniana por Corrente Contínua , Brasil , Feminino , Humanos , Córtex Pré-Frontal
4.
J Strength Cond Res ; 33(5): 1237-1243, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30908367

RESUMO

Lattari, E, Vieira, LAF, Oliveira, BRR, Unal, G, Bikson, M, de Mello Pedreiro, RC, Marques Neto, SR, Machado, S, and Maranhão-Neto, GA. Effects of transcranial direct current stimulation with caffeine intake on muscular strength and perceived exertion. J Strength Cond Res 33(5): 1237-1243, 2019-The aim of this study was to investigate the acute effects of transcranial direct current stimulation (tDCS) associated with caffeine intake on muscular strength and ratings of perceived exertion (RPE). Fifteen healthy young males recreationally trained (age: 25.3 ± 3.2 years, body mass: 78.0 ± 6.9 kg, height: 174.1 ± 6.1 cm) were recruited. The experimental conditions started with the administration of caffeine (Caff) or placebo (Pla) 1 hour before starting the anodal tDCS (a-tDCS or sham). There was an intake of 5 mg·kg of Caff or 5 mg·kg of Pla. After the intake, a-tDCS or sham was applied in the left dorsolateral prefrontal cortex with intensity of 2 mA and 20 minutes of duration. The experimental conditions were defined as Sham + Pla, a-tDCS + Pla, Sham + Caff, and a-tDCS + Caff. After the conditions, muscular strength and RPE were verified. Muscular strength was determined by volume load performed in bench press exercise. Muscular strength in Sham + Pla condition was lower compared with all others conditions (p < 0.05). The RPE in the Sham + Pla was greater compared with a-tDCS + Caff (p < 0.05). Muscular strength was greater in all experimental conditions, and a-tDCS + Caff had lower RPE compared with placebo. When very little gains in muscle strength are expected, both caffeine and tDCS were effective in increasing muscle strength. Besides, the improvement in RPE of the caffeine associated with a-tDCS could prove advantageous in participants experienced in strength training. In fact, coaches and applied sport scientists quantitating the intensity of training based on RPE.


Assuntos
Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Força Muscular , Esforço Físico , Estimulação Transcraniana por Corrente Contínua , Adulto , Exercício Físico/fisiologia , Teste de Esforço , Humanos , Masculino , Esforço Físico/fisiologia , Distribuição Aleatória , Treinamento Resistido , Levantamento de Peso/fisiologia , Adulto Jovem
5.
Brain Stimul ; 12(3): 593-605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30630690

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) has been used to improve exercise performance, though the protocols used, and results found are mixed. OBJECTIVE: We aimed to analyze the effect of tDCS on improving exercise performance. METHODS: A systematic search was performed on the following databases, until December 2017: PubMed/MEDLINE, Embase, Web of Science, SCOPUS, and SportDiscus. Full-text articles that used tDCS for exercise performance improvement in adults were included. We compared the effect of anodal (anode near nominal target) and cathodal (cathode near nominal target) tDCS to a sham/control condition on the outcome measure (performance in isometric, isokinetic or dynamic strength exercise and whole-body exercise). RESULTS: 22 studies (393 participants) were included in the qualitative synthesis and 11 studies (236 participants) in the meta-analysis. The primary motor cortex (M1) was the main nominal tDCS target (n = 16; 72.5%). A significant effect favoring anodal tDCS (a-tDCS) applied before exercise over M1 was found on cycling time to exhaustion (mean difference = 93.41 s; 95%CI = 27.39 s-159.43 s) but this result was strongly influenced by one study (weight = 84%), no effect was found for cathodal tDCS (c-tDCS). No significant effect was found for a-tDCS applied on M1 before or during exercise on isometric muscle strength of the upper or lower limbs. Studies regarding a-tDCS over M1 on isokinetic muscle strength presented mixed results. Individual results of studies using a-tDCS applied over the prefrontal and motor cortices either before or during dynamic muscle strength testing showed positive results, but performing meta-analysis was not possible. CONCLUSION: For the protocols tested, a-tDCS but not c-tDCS vs. sham over M1 improved exercise performance in cycling only. However, this result was driven by a single study, which when removed was no longer significant. Further well-controlled studies with larger sample sizes and broader exploration of the tDCS montages and doses are warranted.


Assuntos
Exercício Físico , Estimulação Transcraniana por Corrente Contínua , Desempenho Atlético , Humanos , Córtex Motor/fisiologia
6.
Sci Rep ; 8(1): 16010, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375485

RESUMO

The Chikungunya (CHIK) virus is epidemic in Brazil, with 170,000 cases in the first half of 2016. More than 60% of patients present relapsing and remitting chronic arthralgia with debilitating pain lasting years. There are no specific therapeutic agents to treat and rehabilitee infected persons with CHIK. Persistent pain can lead to incapacitation, requiring long-term pharmacological treatment. Advances in non-pharmacological treatments are necessary to promote pain relief without side effects and to restore functionality. Clinical trials indicate transcranial direct current stimulation (tDCS) can treat a broad range of chronic pain disorders, including diffuse neuromuscular pain and arthralgia. Here, we demonstrate that the tDCS across the primary motor cortex significantly reduces pain in the chronic phase of CHIK. High-resolution computational model was created to analyze the cortical electric field generated during tDCS and a diffuse and clustered brain current flow including M1 ipsilateral and contralateral, left DLPFC, nucleus accumbens, and cingulate was found. Our findings suggest tDCS could be an effective, inexpensive and deployable therapy to areas lacking resources with a significant number of patients with chronic CHIK persistent pain.


Assuntos
Artralgia/etiologia , Artralgia/terapia , Febre de Chikungunya/complicações , Manejo da Dor , Adulto , Idoso , Artralgia/diagnóstico , Febre de Chikungunya/virologia , Dor Crônica , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Neurotransmissores/uso terapêutico , Manejo da Dor/métodos , Medição da Dor , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA