RESUMO
The deep ocean is the largest ecosystem on the planet, constituting greater than 90% of all habitable space. Over three-quarters of countries globally have deep ocean within their Exclusive Economic Zones. While maintaining deep-ocean function is key to ensuring planetary health, deficiencies in knowledge and governance, as well as inequitable global capacity, challenge our ability to safeguard the resilience of this vast realm, leaving the fate of the deep ocean in the hands of a few. Historically, deep-ocean scientific exploration and research have been the purview of a limited number of nations, resulting in most of humankind not knowing the deep ocean within their national jurisdiction or beyond. In this article, we highlight the inequities and need for increased deep-ocean knowledge generation, and discuss experiences in piloting an innovative project 'My Deep Sea, My Backyard' toward this goal. Recognizing that many deep-ocean endeavours take place in countries without deep-ocean access, this project aimed to reduce dependency on external expertise and promote local efforts in two small island developing states, Trinidad and Tobago and Kiribati, to explore their deep-sea backyards using comparatively low-cost technology while building lasting in-country capacity. We share lessons learned so future efforts can bring us closer to achieving this goal. This article is part of the theme issue 'Nurturing resilient marine ecosystems'.
Assuntos
Fortalecimento Institucional , Ecossistema , Ambiente Domiciliar , Oceanos e Mares , Projetos PilotoRESUMO
This study reports the first records of cowsharks (Hexanchidae) in the Galápagos Islands, in particular Notorynchus cepedianus and Hexanchus griseus, observed between depths of 210 and 418 m on footage from free-falling autonomous deep-ocean cameras. These sightings provide new information on the habitat preferences and range distribution for N. cepedianus and the first records of H. griseus in Ecuadorian waters. The findings support the formulation of regional conservation strategies for these large apex predator species and highlight the limited biological knowledge of Galápagos' deep-water ecosystems.