Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679607

RESUMO

This paper presents an integrated monitoring system for the driver and the vehicle in a single case of study easy to configure and replicate. On-board vehicle sensors and remote sensors are combined to model algorithms for estimating polluting emissions, fuel consumption, driving style and driver's health. The main contribution of this paper is the analysis of interactions among the above monitored features highlighting the influence of the driver in the vehicle performance and vice versa. This analysis was carried out experimentally using one vehicle with different drivers and routes and implemented on a mobile application. Compared to commercial driver and vehicle monitoring systems, this approach is not customized, uses classical sensor measurements, and is based on simple algorithms that have been already proven but not in an interactive environment with other algorithms. In the procedure design of this global vehicle and driver monitoring system, a principal component analysis was carried out to reduce the variables used in the training/testing algorithms with objective to decrease the transfer data via Bluetooth between the used devices: a biometric wristband, a smartphone and the vehicle's central computer. Experimental results show that the proposed vehicle and driver monitoring system predicts correctly the fuel consumption index in 84%, the polluting emissions 89%, and the driving style 89%. Indeed, interesting correlation results between the driver's heart condition and vehicular traffic have been found in this analysis.


Assuntos
Condução de Veículo , Aplicativos Móveis , Acidentes de Trânsito , Computadores , Smartphone
2.
Brain Sci ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073242

RESUMO

This study presents a neuroengineering-based machine learning tool developed to predict students' performance under different learning modalities. Neuroengineering tools are used to predict the learning performance obtained through two different modalities: text and video. Electroencephalographic signals were recorded in the two groups during learning tasks, and performance was evaluated with tests. The results show the video group obtained a better performance than the text group. A correlation analysis was implemented to find the most relevant features to predict students' performance, and to design the machine learning tool. This analysis showed a negative correlation between students' performance and the (theta/alpha) ratio, and delta power, which are indicative of mental fatigue and drowsiness, respectively. These results indicate that users in a non-fatigued and well-rested state performed better during learning tasks. The designed tool obtained 85% precision at predicting learning performance, as well as correctly identifying the video group as the most efficient modality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA