Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 299: 113623, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976836

RESUMO

The Holostei group occupies a critical phylogenetic position as the sister group of the Teleostei. However, little is known about holostean pituitary anatomy or brain distribution of important reproductive neuropeptides, such as the gonadotropin-inhibitory hormone (GnIH). Thus, the present study set out to characterize the structure of the pituitary and to localize GnIH-immunoreactive cells in the brain of Atractosteus tropicus from the viewpoint of comparative neuroanatomy. Juveniles of both sexes were processed for general histology and immunohistochemistry. Based on the differences in cell organization, morphology, and staining properties, the neurohypophysis and three regions in the adenohypophysis were identified: the rostral and proximal pars distalis (PPD) and the pars intermedia. This last region was found to be innervated by the neurohypophysis. This organization, together with the presence of a saccus vasculosus, resembles the general teleost pituitary organization. A vast number of blood vessels were also recognized between the infundibulum floor of the hypothalamus and the PPD, evidencing the characteristic presence of a median eminence and a portal system. However, this well-developed pituitary portal system resembles that of tetrapods. As regards the immunohistochemical localization of GnIH, we found four GnIH-immunoreactive (GnIH-ir) populations in three hypothalamic nuclei (suprachiasmatic, retrotuberal, and tuberal nuclei) and one in the diencephalon (prethalamic nucleus), as well as a few scattered neurons throughout the olfactory bulbs, the telencephalon, and the intersection between them. GnIH-ir fibers showed a widespread distribution over almost all brain regions, suggesting that GnIH function is not restricted to reproduction only. In conclusion, the present study describes, for the first time, the pituitary of A. tropicus and the neuroanatomical localization of GnIH in a holostean fish that exhibits a similar distribution pattern to that of teleosts and other vertebrates, suggesting a high degree of phylogenetic conservation of this system.


Assuntos
Encéfalo/metabolismo , Peixes/metabolismo , Hormônios Hipotalâmicos/metabolismo , Animais , Filogenia
2.
Artigo em Inglês | MEDLINE | ID: mdl-30837949

RESUMO

Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior. In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts, discuss its relationship with GnRH variants and summarize the few reports available about the ontogeny of the GnIH system. Considering all the information presented in this review, we propose that in teleosts, GnIH could have other functions beyond reproduction or act as an integrative signal in the reproductive process. However, further studies are required in order to clarify the role of GnIH in this group including its involvement in development, a key stage that strongly impacts on adult life.

3.
Gen Comp Endocrinol ; 273: 144-151, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913169

RESUMO

Reproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3. Almost 30 years later, a new peptide that inhibits gonadotropin synthesis and secretion was discovered and thus named as gonadotropin-inhibitory hormone (GnIH). In avians and mammals, the interaction and regulation between GnRH and GnIH neurons has been widely studied; however, in other vertebrate groups there is little information about the relationship between these neurons. In previous works, three GnRH variants and a GnIH propeptide were characterized in Cichlasoma dimerus, and it was demonstrated that GnIH inhibited gonadotropins release in this species. Because no innervation was detected at the pituitary level, we speculate that GnIH would inhibit gonadotropins via GnRH. Thus, the aim of the present study was to evaluate the anatomical relationship between neurons expressing GnIH and the three GnRH variants by double labelling confocal immunofluorescence in adults of C. dimerus. Our results showed no apparent contacts between GnIH and GnRH1, fiber to fiber interactions between GnIH and GnRH2, and co-localization of GnIH and GnRH3 variant in neurons of the nucleus olfacto-retinalis. In conclusion, whether GnIH regulates the expression or secretion of GnRH1 in this species, an indirect modulation seems more plausible. Moreover, the present results suggest an interaction between GnIH and GnRH2 systems. Finally, new clues were provided to investigate the role of nucleus olfacto-retinalis cells and putative GnIH and GnRH3 interactions in the modulation of the reproductive network in teleost fish.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Ciclídeos/anatomia & histologia , Ciclídeos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Clima Tropical , Animais , Feminino , Masculino
4.
J Neuroendocrinol ; : e12608, 2018 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-29754434

RESUMO

RFamide peptides are expressed in the early stages of development in most vertebrates. Gonadotropin-inhibitory hormone (GnIH) belongs to the RFamide family, and its role in reproduction has been widely studied in adult vertebrates, ranging from fish to mammals. As only three reports evaluated GnIH during development, the aim of this study was to characterise the ontogeny of GnIH in a fish model, Cichlasoma dimerus. We detected the presence of two GnIH-immunoreactive (GnIH-ir) cell clusters with spatial and temporal differences. One cluster was observed by 3 days post-hatching (dph) in the nucleus olfacto-retinalis (NOR) and the other in the nucleus posterioris periventricularis by 14 dph. The number of GnIH-ir neurons increased in both nuclei, whereas their size increased only in the NOR from hatchling to juvenile stages. These changes occurred from the moment larvae started feeding exogenously and during development and differentiation of gonadal primordia. We showed by double-label immunofluorescence that only GnIH-ir neurons in the NOR co-expressed GnRH3 associated peptide. In addition, GnIH-ir fibre density increased in all brain regions from 5 dph. GnIH-ir fibres were also detected in the retina, optic tract and optic tectum, suggesting that GnIH acts as a neuromodulator of photoreception and the integration of different sensory modalities. Also, there were GnIH-ir fibres in the pituitary from 14 dph, which were in close association with somatotropes. Moreover, GnIH-ir fibres were observed in the saccus vasculosus from 30 dph, suggesting a potential role of GnIH in the modulation of its function. Finally, we found that gnih was expressed from 1 dph, and that the pattern of variation of its transcript levels was in accordance with that of cell number. Present results are the starting point for the study of new GnIH roles during development. This article is protected by copyright. All rights reserved.

5.
Anim. Reprod. (Online) ; 14(2): 452-458, Apr.-June.2017. graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1461270

RESUMO

Gonadotropin inhibitory hormone (GnIH) as a hypothalamic neuropeptide inhibits the synthesis and release of gonadotropins via affecting gonadotropin releasing hormone (GnRH) neurons and could be a key neuropeptide in regulating seasonal breeding in birds. The aim of the present study was to investigate the expression of GnIH in the hypothalamus of male and female chukar partridges (Alectoris chukar) during the breeding and non-breeding seasons. In breeding (May) and non-breeding (January) seasons, the brains of sexually-matured male (n = 10) and female (n = 10) chukar partridges were removed following fixation. Sections (30 μm) were prepared from the entire diencephalon and stained immunohistochemically. GnIH-immunoreactive neurons were primarily found in paraventricular nucleus, and few positive neurons were detected in dorsomedial nucleus. The numbers of GnIH-immunoreactive neurons were significantly lower in the breeding season compared with the non-breeding season in both male and female (P < 0.05). There were no significant differences in the number of GnIH neurons in paraventricular nucleus between the sexes. Gonadal weight and volume in male and female partridges were significantly higher in the breeding season. The results showed that GnIH neurons may partly contribute to the regulation of the seasonal breeding in the chukar partridge.


Assuntos
Animais , Galliformes/anatomia & histologia , Galliformes/crescimento & desenvolvimento , Gonadotropinas/classificação , Gonadotropinas/imunologia
6.
Anim. Reprod. (Online) ; 14(2): 452-458, Apr.-June.2017. graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-15903

RESUMO

Gonadotropin inhibitory hormone (GnIH) as a hypothalamic neuropeptide inhibits the synthesis and release of gonadotropins via affecting gonadotropin releasing hormone (GnRH) neurons and could be a key neuropeptide in regulating seasonal breeding in birds. The aim of the present study was to investigate the expression of GnIH in the hypothalamus of male and female chukar partridges (Alectoris chukar) during the breeding and non-breeding seasons. In breeding (May) and non-breeding (January) seasons, the brains of sexually-matured male (n = 10) and female (n = 10) chukar partridges were removed following fixation. Sections (30 μm) were prepared from the entire diencephalon and stained immunohistochemically. GnIH-immunoreactive neurons were primarily found in paraventricular nucleus, and few positive neurons were detected in dorsomedial nucleus. The numbers of GnIH-immunoreactive neurons were significantly lower in the breeding season compared with the non-breeding season in both male and female (P < 0.05). There were no significant differences in the number of GnIH neurons in paraventricular nucleus between the sexes. Gonadal weight and volume in male and female partridges were significantly higher in the breeding season. The results showed that GnIH neurons may partly contribute to the regulation of the seasonal breeding in the chukar partridge.(AU)


Assuntos
Animais , Galliformes/anatomia & histologia , Galliformes/crescimento & desenvolvimento , Gonadotropinas/classificação , Gonadotropinas/imunologia
7.
J Exp Biol ; 218(Pt 17): 2694-704, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26139662

RESUMO

Nutrition influences reproductive functions across vertebrates, but the effects of food availability on the functioning of the hypothalamic-pituitary-gonadal (HPG) axis in wild birds and the mechanisms mediating these effects remain unclear. We investigated the influence of chronic food restriction on the HPG axis of photostimulated house finches, Haemorhous mexicanus. Food-restricted birds had underdeveloped testes with smaller seminiferous tubules than ad libitum-fed birds. Baseline plasma testosterone increased in response to photostimulation in ad libitum-fed but not in food-restricted birds. Food availability did not, however, affect the plasma testosterone increase resulting from a gonadotropin-releasing hormone-I (GnRH) or a luteinizing hormone (LH) challenge. The number of hypothalamic GnRH immunoreactive (ir) but not proGnRH-ir perikarya was higher in food-restricted than in ad libitum-fed finches, suggesting inhibited secretion of GnRH. Hypothalamic gonadotropin-inhibitory hormone (GnIH)-ir and neuropeptide Y (NPY)-ir were not affected by food availability. Plasma corticosterone (CORT) was also not affected by food availability, indicating that the observed HPG axis inhibition did not result from increased activity of the hypothalamic-pituitary-adrenal (HPA) axis. This study is among the first to examine multilevel functional changes in the HPG axis in response to food restriction in a wild bird. The results indicate that food availability affects both hypothalamic and gonadal function, but further investigations are needed to clarify the mechanisms by which nutritional signals mediate these effects.


Assuntos
Tentilhões/fisiologia , Privação de Alimentos , Hormônio Liberador de Gonadotropina/farmacologia , Sistema Hipotálamo-Hipofisário/fisiologia , Hormônio Luteinizante/farmacologia , Precursores de Proteínas/farmacologia , Testículo/fisiologia , Testosterona/sangue , Animais , Corticosterona/sangue , Tentilhões/crescimento & desenvolvimento , Hormônios Hipotalâmicos/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Fotoperíodo , Sistema Hipófise-Suprarrenal/fisiologia , Reprodução/fisiologia , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA