Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073006

RESUMO

Carboxylesterases comprise a major class of α/ß-fold hydrolases responsible for the cleavage and formation of ester bonds. Found ubiquitously in nature, these enzymes are crucial for the metabolism of both endogenous and exogenous carboxyl esters in animals, plants and microorganisms. Beyond their essential physiological roles, carboxylesterases stand out as one of the important classes of biocatalysts for biotechnology. BlEst2, an enzyme previously classified as Bacillus licheniformis esterase, remains largely uncharacterized. In the present study, we elucidate the structural biology, molecular dynamics and biochemical features of BlEst2. Our findings reveal a canonical α/ß-hydrolase fold similar to the ESTHER block L of lipases, further augmented by two additional accessory C-terminal domains. Notably, the catalytic domain demonstrates two insertions, which occupy conserved locations in α/ß-hydrolase proteins and commonly form the lid domain in lipase structures. Intriguingly, our in vitro cleavage of C-terminal domains revealed the structure of the active form of BlEst2. Upon activation, BlEst2 showed a markedly elevated hydrolytic activity. This observation implies that the intramolecular C-terminal domain serves as a regulatory intramolecular inhibitor. Interestingly, despite exhibiting esterase-like activity, BlEst2 structural characteristics align more closely with lipases. This suggests that BlEst2 could potentially represent a previously unrecognized subgroup within the realm of carboxyl ester hydrolases.

2.
Biomacromolecules ; 22(10): 4251-4261, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34515474

RESUMO

Cellulose possesses considerable potential for a wide range of sustainable applications. Nanocellulose-based material properties are primarily dependent on the structural surface characteristics of its crystalline planes. Experimental measurements of the affinity of crystalline nanocellulose surfaces with water are scarce and challenging to obtain. Therefore, the relative hydrophilicity of different cellulose allomorphs crystalline planes is often inferred from qualitative assessments of their surface and the exposition of polar groups to the solvent. This work investigates the relative hydrophilicity of cellulose surfaces using molecular dynamics simulations. The behavior of a water droplet laid on different crystal planes was used to determine their relative hydrophilicity. The water molecules fully spread onto highly hydrophilic surfaces. However, a water droplet placed on less hydrophilic surfaces equilibrates as an oblate spheroidal cap allowing the measurement of a contact angle. The results indicate that the Iα (010), Iα (11̅0), Iß (010), and Iß (110) faces, as well as the faces of human-made celluloses II and III_I (100), (11̅0), (010), and (110) are all highly hydrophilic. They all have a contact angle value inferior to 11°. Not unexpectedly, the Iα (001) and Iß (100) surfaces are less hydrophilic with contact angles of 48 and 34°, respectively. However, the Iß (11̅0) plane, often referred to as a hydrophilic surface, forms a contact angle of about 32°. The results are rationalized in terms of structure, exposure of hydroxyl groups to the solvent, and degree of cellulose-cellulose versus cellulose-water hydrogen bonds on each face. The simulations also show that the surface oxidation degree tunes the surface hydrophilicity in a nonlinear manner due to cooperative effects involving water-cellulose interactions. Our study helps us to understand how the degree of hydrophilicity of cellulose emerges from specific structural features of each crystalline surface.


Assuntos
Celulose , Simulação de Dinâmica Molecular , Cristalização , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA