Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cells Tissues Organs ; 212(6): 567-582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35871510

RESUMO

Non-healing skin wounds remain a challenge in the healthcare system. In this sense, it is suggested that the secretome of mesenchymal stromal cells (MSCs) can be effective as a therapeutic strategy for regenerative medicine. Therefore, this systematic review aimed to determine the effects of treatment with a secretome derived from MSCs on the healing of skin wounds in a preclinical model of rodents (mice and rats). Studies were systematically retrieved from 6 databases and gray literature that provided 1,172 records, of which 25 met the inclusion criteria for qualitative analysis. Results revealed substantial heterogeneity among studies concerning experimental designs and methodologies, resulting in a high risk of bias. Together, the selected studies reported that treatment improved wound healing by (1) accelerating wound closure and improving skin repair quality; (2) reducing inflammation by decreasing the number of cells and inflammatory cytokines, accompanied by polarization of the M2 macrophage; (3) complete re-epithelialization and epidermal reorganization; (4) neovascularization promoted by proliferation of endothelial cells (CD34+) and increased levels of pro-angiogenic mediators; (5) better scar quality promoted by increased expression of collagen types I and III, as well as improved deposition and remodeling of collagen fibers. In conclusion, despite the need for alignment of methodological protocols and transparent reports in future studies, results show that the secretome of MSCs from different tissue sources corresponds to a promising tool of regenerative medicine for the treatment of skin wounds.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Camundongos , Animais , Células Endoteliais , Secretoma , Pele/lesões , Cicatrização , Colágeno , Transplante de Células-Tronco Mesenquimais/métodos
2.
Cytotherapy ; 22(5): 247-260, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32234290

RESUMO

The process of wound healing restores skin homeostasis but not full functionality; thus, novel therapeutic strategies are needed to accelerate wound closure and improve the quality of healing. In this context, tissue engineering and cellular therapies are promising approaches. Although sharing essential characteristics, mesenchymal stromal cells (MSCs) isolated from different tissues might have distinct properties. Therefore, the aim of this study was to comparatively investigate, by a mouse model in vivo assay, the potential use of dermal-derived MSCs (DSCs) and adipose tissue-derived MSCs (ASCs) in improving skin wound healing. Human DSCs and ASCs were delivered to full-thickness mouse wounds by a collagen-based scaffold (Integra Matrix). We found that the association of both DSCs and ASCs with the Integra accelerated wound closure in mice compared with the biomaterial only (control). Both types of MSCs stimulated angiogenesis and extracellular matrix remodeling, leading to better quality scars. However, the DSCs showed smaller scar size,superior extracellular matrix deposition, and greater number of cutaneous appendages. Besides, DSCs and ASCs reduced inflammation by induction of macrophage polarization from a pro-inflammatory (M1) to a pro-repair (M2) phenotype. In conclusion, both DSCs and ASCs were able to accelerate the healing of mice skin wounds and promote repair with scars of better quality and more similar to healthy skin than the empty scaffold. DSCs associated with Integra induced superior overall results than the Integra alone, whereas scaffolds with ASCs showed an intermediate effect, often not significantly better than the empty biomaterial.


Assuntos
Tecido Adiposo/citologia , Polaridade Celular/genética , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Fenótipo , Pele/citologia , Cicatrização , Adulto , Animais , Colágeno/farmacologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Fisiológica , Pele/lesões , Engenharia Tecidual/métodos , Adulto Jovem
3.
Cell Mol Neurobiol ; 40(3): 383-393, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31555941

RESUMO

Neural crest cells (NCCs) comprise a population of multipotent progenitors and stem cells at the origin of the peripheral nervous system (PNS) and melanocytes of skin, which are profoundly influenced by microenvironmental factors, among which is basic fibroblast growth factor 2 (FGF2). In this work, we further investigated the role of this growth factor in quail trunk NC morphogenesis and demonstrated its huge effect in NCC growth mainly by stimulating cell proliferation but also reducing cell death, despite that NCC migration from the neural tube explant was not affected. Moreover, following FGF2 treatment, reduced expression of the early NC markers Sox10 and FoxD3 and improved proliferation of HNK1-positive NCC were observed. Since these markers are involved in the regulation of glial and melanocytic fate of NC, the effect of FGF2 on NCC differentiation was investigated. Therefore, in the presence of FGF2, increased proportions of NCCs positives to the melanoblast marker Mitf as well as NCCs double stained to Mitf and BrdU were recorded. In addition, treatment with FGF2, followed by differentiation medium, resulted in increased expression of melanin and improved proportion of melanin-pigmented melanocytes without alteration in the glial marker Schwann myelin protein (SMP). Taken together, these data further reveal the important role of FGF2 in NCC proliferation, survival, and differentiation, particularly in melanocyte development. This is the first demonstration of FGF2 effects in melanocyte commitment of NC and in the proliferation of Mitf-positive melanoblasts. Elucidating the differentiation process of embryonic NCCs brings us a step closer to understanding the development of the PNS and then undertaking the search for advanced technologies to prevent, or treat, injuries caused by NC-related disorders, also known as neurocristopathies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Melanócitos/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Células-Tronco Embrionárias/fisiologia , Melaninas/metabolismo , Melanócitos/fisiologia , Crista Neural/citologia , Tubo Neural/citologia , Tubo Neural/efeitos dos fármacos , Nervos Periféricos/citologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Codorniz/embriologia , Tronco
4.
Cells Tissues Organs ; 207(3-4): 138-148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31734662

RESUMO

This study aimed to evaluate the use of human dental pulp stem cells (hDPSCs) in non-critical-sized mandibular bone defects in rats. hDPSCs from permanent teeth were isolated and engrafted in mandibular bone defects in rats for 7, 14, and 28 days; bone defects without cells formed the control group. Samples were evaluated by scanning electron microscopy (SEM), light microscopy (hematoxylin and eosin staining), and the regeneration area was measured by the Image J program. Before surgery procedures, the human dental pulp cells were characterized as dental pulp stem cells: fusiform morphology, plastic-adherent; expression of CD105, CD73, and CD90; lack of expression of CD45 and CD34, and differentiated into osteoblasts, adipocytes, and chondroblasts. The results indicated that within 7 days the control group presented a pronounced bone formation when compared with the treated group (p < 0.05). After 14 days, the treated group showed an increase in bone formation, but with no statistical difference among the groups (p > 0.05). In the final evaluated period there was no difference between the control group and the treated group (p > 0.05). There was a significant difference between 7 and 14 days (p < 0.05) and between 7 and 28 days (p < 0.05) in the treated group. In conclusion, there is no evidence that the use of hDPSCs in the conditions of this study could improve bone formation in non-critical-sized mandibular bone defects.


Assuntos
Polpa Dentária/citologia , Mandíbula/citologia , Traumatismos Mandibulares/terapia , Osteogênese , Transplante de Células-Tronco , Adolescente , Animais , Células Cultivadas , Humanos , Masculino , Mandíbula/patologia , Traumatismos Mandibulares/patologia , Ratos , Ratos Wistar , Células-Tronco/citologia
5.
Stem Cells Cloning ; 11: 43-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425533

RESUMO

INTRODUCTION: Owing to their similarity with humans, rabbits are useful for multiple applications in biotechnology and translational research from basic to preclinical studies. In this sense, mesenchymal stem cells (MSCs) are known for their therapeutic potential and promising future in regenerative medicine. As many studies have been using rabbit adipose-derived MSCs (ASCs) as a model of human ASCs (hASCs), it is fundamental to compare their characteristics and understand how distinct features could affect the translation to human medicine. OBJECTIVE: The aim of this study was to comparatively characterize rabbit ASCs (rASCs) and hASCs to further uses in biotechnology and translational studies. MATERIALS AND METHODS: rASCs and hASCs were isolated and characterized by their immunophenotype, differentiation potential, proliferative profile, and nuclear stability in vitro. RESULTS AND DISCUSSION: Both ASCs presented differentiation potential to osteocytes, chondrocytes, and adipocytes and shared similar immunophenotype expression to CD105+, CD34-, and CD45-, but rabbit cells expressed significantly lower CD73 and CD90 than human cells. In addition, rASCs presented greater clonogenic potential and proliferation rate than hASCs but no difference in nuclear alterations. CONCLUSION: The distinct features of rASCs and hASCs can positively or negatively affect their use for different applications in biotechnology (such as cell reprogramming) and translational studies (such as cell transplantation, tissue engineering, and pharmacokinetics). Nevertheless, the particularities between rabbit and human MSCs should not prevent rabbit use in preclinical models, but care should be taken to interpret results and properly translate animal findings to medicine.

6.
J Biomater Appl ; 33(3): 422-434, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30223731

RESUMO

Carrageenan is a thermoreversible polymer of natural origin widely used in food and pharmaceutical industry that presents a glycosaminoglycan-like structure. Herein, we show that kappa-type carrageenan extracted by a semi-refined process from the red seaweed Kappaphycus alvarezii displayed both chemical and structural properties similar to a commercial carrageenan. Moreover, both extracted carrageenan hydrogel and commercial carrageenan hydrogel can serve as a scaffold for in vitro culture of human skin-derived multipotent stromal cells, demonstrating considerable potential as cell-carrier materials for cell delivery in tissue engineering. Skin-derived multipotent stromal cells cultured inside the carrageenan hydrogels showed a round shape morphology and maintained their growth and viability for at least one week in culture. Next, the effect of the extracted carrageenan hydrogel loaded with human skin-derived multipotent stromal cells was evaluated in a mouse model of full-thickness skin wound. Macroscopic and histological analyses revealed some pointed ameliorated features, such as reduced inflammatory process, faster initial recovery of wounded area, and improved extracellular matrix deposition. These results indicate that extracted carrageenan hydrogel can serve as a scaffold for in vitro growth and maintenance of human SD-MSCs, being also able to act as a delivery system of cells to wounded skin. Thus, evaluation of the properties discussed in this study contribute to a further understanding and specificities of the potential use of carrageenan hydrogel as a delivery system for several applications, further to skin wound healing.


Assuntos
Carragenina/química , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pele/citologia , Alicerces Teciduais/química , Cicatrização , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/lesões , Pele/patologia , Engenharia Tecidual/métodos
7.
Mech Dev ; 153: 17-29, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30081090

RESUMO

The neural crest (NC) is one of the most fascinating structures during embryonic development. Unique to vertebrate embryos, these cells give rise to important components of the craniofacial skeleton, such as the jaws and skull, as well as melanocytes and ganglia of the peripheral nervous system. Worldwide, several groups have been studying NC development and specifically in the Latin America (LA) they have been growing in numbers since the 1990s. It is important for the world to recognize the contributions of LA researchers on the knowledge of NC development, as it can stimulate networking and improvement in the field. We developed a database of LA publications on NC development using ORCID and PUBMED as search engines. We thoroughly describe all of the contributions from LA, collected in five major topics on NC development mechanisms: i) induction and specification; ii) migration; iii) differentiation; iv) adult NC; and, v) neurocristopathies. Further analysis was done to correlate each LA country with topics and animal models, and to access collaboration between LA countries. We observed that some LA countries have made important contributions to the comprehension of NC development. Interestingly, some LA countries have a topic and an animal model as their strength; in addition, collaboration between LA countries is almost inexistent. This review will help LA NC research to be acknowledged, and to facilitate networking between students and researchers worldwide.


Assuntos
Crista Neural/citologia , Crista Neural/metabolismo , Animais , Padronização Corporal , Diferenciação Celular , Movimento Celular , Humanos , América Latina , Modelos Biológicos
8.
J Hazard Mater ; 337: 80-89, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28511044

RESUMO

Bentonites are commonly used as feed additives to reduce the bioavailability and thus the toxicity of aflatoxins by adsorbing the toxins in the gastrointestinal tract. Aflatoxins are particular harmful mycotoxins mainly found in areas with hot and humid climates. They occur in food and feedstuff as a result of fungal contamination before and after harvest. The aim of this study was to modify Brazilian bentonite clay by incorporation of zinc (Zn) ions in order to increase the adsorption capacity and consequently reduce the toxicity of aflatoxins. The significance of Zn intercalating conditions such as concentration, temperature and reaction time were investigated. Our results showed that the Zn treatment of the bentonite increased the aflatoxin B1 (AFB1) adsorption and that Zn concentration had a negative effect. Indeed, temperature and time had no significant effect in the binding capacity. The modified bentonite (Zn-Bent1) was not cytotoxic to either fibroblasts (3T3) nor epithelial colorectal adenocarcinoma cells (Caco-2) cell lines. Interestingly, Zn-Bent1 has higher protective effect against AFB1 induced cytotoxicity than the unmodified bentonite. In conclusion, the Zn modified bentonite, Zn-Bent1, represent an improved tool to prevent aflatoxicosis in animals fed on AFB1 contaminated feed.


Assuntos
Aflatoxina B1/isolamento & purificação , Aflatoxina B1/intoxicação , Bentonita/farmacologia , Zinco/química , Células 3T3 , Adsorção , Aflatoxina B1/química , Ração Animal/análise , Animais , Bentonita/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Contaminação de Alimentos/análise , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Intoxicação/prevenção & controle , Intoxicação/veterinária , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Cell Mol Neurobiol ; 37(5): 941-947, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27510317

RESUMO

Spinal cord injury (SCI) is a devastating neurologic disorder with significant impacts on quality of life, life expectancy, and economic burden. Although there are no fully restorative treatments yet available, several animal and small-scale clinical studies have highlighted the therapeutic potential of cellular interventions for SCI. Mesenchymal stem cells (MSCs)-which are conventionally isolated from the bone marrow-recently emerged as promising candidates for treating SCI and have been shown to provide trophic support, ameliorate inflammatory responses, and reduce cell death following the mechanical trauma. Here we evaluated the human skin as an alternative source of adult MSCs suitable for autologous cell transplantation strategies for SCI. We showed that human skin-derived MSCs (hSD-MSCs) express a range of neural markers under standard culture conditions and are able to survive and respond to neurogenic stimulation in vitro. In addition, using histological analysis and behavioral assessment, we demonstrated as a proof-of-principle that hSD-MSC transplantation reduces the severity of tissue loss and facilitates locomotor recovery in a rat model of SCI. Altogether, the study provides further characterization of skin-derived MSC cultures and indicates that the human skin may represent an attractive source for cell-based therapies for SCI and other neurological disorders. Further investigation is needed to elucidate the mechanisms by which hSD-MSCs elicit tissue repair and/or locomotor recovery.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Atividade Motora , Recuperação de Função Fisiológica , Pele/citologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Neurogênese , Traumatismos da Medula Espinal/patologia
10.
Cell Mol Neurobiol ; 37(2): 371-376, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27236697

RESUMO

Folate deficiency and hyperhomocysteinemia have long been associated with developmental anomalies, particularly neural tube defects and neurocristopathies-a group of diverse disorders that result from defective growth, differentiation, and migration of neural crest (NC) cells. However, the exact mechanisms by which homocysteine (Hcys) and/or folate deficiencies disrupt NC development are still poorly understood in mammals. In this work, we employed a well-defined culture system to investigate the effects of Hcys and folic acid (FA) supplementation on the morphogenetic processes of murine NC cells in vitro. We demonstrated that Hcys increases outgrowth and proliferation of cephalic NC cells and impairs their differentiation into smooth muscle cells. In addition, we showed that FA alone does not directly affect the developmental dynamics of the cephalic NC cells but is able to prevent the Hcys-induced effects. Our results, therefore, suggest that elevated Hcys levels per se cause dysmorphogenesis of the cephalic NC and might contribute to neurocristopathies in mammalian embryos.


Assuntos
Ácido Fólico/administração & dosagem , Homocisteína/administração & dosagem , Morfogênese/fisiologia , Crista Neural/embriologia , Crista Neural/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/efeitos dos fármacos , Crista Neural/efeitos dos fármacos
11.
Colloids Surf B Biointerfaces ; 145: 555-561, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27281241

RESUMO

Bentonite clays exhibit high adsorptive capacity for contaminants, including aflatoxin B1 (AFB1), a mycotoxin responsible for causing severe toxicity in several species including pigs, poultry and man. Organophilic treatments is known to increase the adsorption capacity of bentonites, and the primary aim of this study was to evaluate the ability of Brazilian bentonite and two organic salts - benzalkonium chloride (BAC) and cetyltrimethylammonium bromide (CTAB) to adsorb AFB1. For this end, 2(2) factorial designs were used in order to analyze if BAC or CTAB was able to increase AFB1 adsorption when submitted in different temperature and concentration. Both BAC and CTAB treatment (at 30°C and 2% of salt concentration) were found to increase the adsorption of AFB1 significantly compared with untreated bentonite. After organophilic bentonite treatments with BAC or CTAB, a vibration of CH stretch (2850 and 2920cm(-1)) were detected. A frequency of the SiO stretch (1020 and 1090cm(-1)) was changed by intercalation of organic cation. Furthermore, the interlayer spacing of bentonite increases to 1.23nm (d001 reflection at 2θ=7.16) and 1.22 (d001 reflection at 2θ=7.22) after the addition of BAC and CTAB, respectively. Another aim of the study was to observe the effects of these two bentonite salts in neural crest stem cell cultures. The two materials that were created by organophilic treatments were not found to be toxic to stem cells. Furthermore the results indicate that the two materials tested may protect the neural crest stem cells against damage caused by AFB1.


Assuntos
Aflatoxina B1/toxicidade , Bentonita/farmacologia , Citoproteção/efeitos dos fármacos , Compostos Orgânicos/química , Células-Tronco/citologia , Adsorção , Análise de Variância , Animais , Compostos de Benzalcônio/química , Cátions , Cetrimônio , Compostos de Cetrimônio/química , Codorniz , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/efeitos dos fármacos , Temperatura , Vibração , Difração de Raios X
12.
Tissue Cell ; 47(5): 465-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253417

RESUMO

Cell differentiation is essential for maxillaries and tooth development. Facial mesenchymal tissue is formed by neural crest cells (NC). These cells are highly migratory, giving rise to various cell types, considered with a high level of plasticity, indicating that they contain progenitor cells with a great power of differentiation. In this study, it was analyzed the presence of NC cell progenitors and mesenchymal stem cells (MSC) during maxillaries osteogenesis and odontogenesis in rats. Histological slides were collected in two phases: embryonic age of 15 and 17 days; 2, 4 and 7 days after birth. Immunohistochemistry for MSC markers (Osterix) and NC cells (Sox10, HNK1) was performed. The results showed positive expression for Osterix and HNK1 in undifferentiated ectomesenchymal cells in early and late stages; Sox10 was present only in early stages in undifferentiated cells. All markers were present in differentiated cells. Although the experiments performed do not allow us to explain a possible role for Osx, HNK1 and Sox10 in both differentiated and undifferentiated cells during osteogenesis and odontogenesis, it had shown important results not yet described: the presence of HNK1 and Sox10 in osteoblasts and odontoblasts in late development stages and in the tooth germ epithelial cells and ameloblasts.


Assuntos
Células-Tronco Embrionárias/citologia , Crista Neural/citologia , Odontogênese/fisiologia , Osteogênese/fisiologia , Fatores de Transcrição SOXE/metabolismo , Sulfotransferases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Ratos Wistar , Germe de Dente/citologia
13.
PLoS One ; 10(3): e0120322, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798623

RESUMO

Strategies for skin regeneration have been developed to provide effective treatment for cutaneous wounds and disease. Dermal substitutes have been used to cover the lesion to facilitate cell colonization, thereby promoting dermal regeneration. However, very little is known about Pelnac matrix especially at histological level. Therefore, the present work carried out an experimental in vivo comparative analysis between Pelnac and Integra, the most used dermal templates, in a mouse model of full-thickness skin wounds. Histological sections performed at the 3rd, 6th and 9th days after surgery were analyzed with regard to inflammatory response and vascularization. Both templates were completely incorporated in all animals at the end of the analyzed period. Pelnac-treated animals displayed reduced granulation tissue during the first 6 days of treatment compared to the animals treated with Integra at the same time period. The number of inflammatory cells (neutrophils) was similar in both groups during the period, significantly reducing at the end of inflammatory phase (9th day of treatment) consistent with the progression of healing process. In addition, the density of blood vessels was also statistically similar in both matrices. Therefore, the two dermal templates displayed comparable biological behavior in tissue repair. It is noteworthy that this is the first experimental study comparing Pelnac and Integra dermal templates with focus on full-thickness skin wounds.


Assuntos
Materiais Biocompatíveis/farmacologia , Pele Artificial , Cicatrização/efeitos dos fármacos , Animais , Vasos Sanguíneos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/irrigação sanguínea , Pele/citologia , Pele/efeitos dos fármacos , Alicerces Teciduais
14.
Exp Cell Res ; 327(1): 37-47, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24907656

RESUMO

Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF2) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF2, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins ßIII-tubulin and nestin, as well as upregulation of the pan neuronal marker ßIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF-FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF-FGF2 in neuronal differentiation protocols.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Epiderme/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Regulação para Baixo/fisiologia , Células Epiteliais/metabolismo , Proteína GAP-43/metabolismo , Folículo Piloso/metabolismo , Camundongos , Células-Tronco Multipotentes/metabolismo , Miócitos de Músculo Liso/metabolismo , Regulação para Cima/fisiologia
15.
PLoS One ; 9(2): e89542, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586857

RESUMO

New strategies for skin regeneration are needed in order to provide effective treatment for cutaneous wounds and disease. Mesenchymal stem cells (MSCs) are an attractive source of cells for tissue engineering because of their prolonged self-renewal capacity, multipotentiality, and ability to release active molecules important for tissue repair. In this paper, we show that human skin-derived mesenchymal stromal cells (SD-MSCs) display similar characteristics to the multipotent MSCs. We also evaluate their growth in a three-dimensional (3D) culture system with dermal substitutes (Integra and Pelnac). When cultured in monolayers, SD-MSCs expressed mesenchymal markers, such as CD105, Fibronectin, and α-SMA; and neural markers, such as Nestin and ßIII-Tubulin; at transcriptional and/or protein level. Integra and Pelnac equally supported the adhesion, spread and growth of human SD-MSCs in 3D culture, maintaining the MSC characteristics and the expression of multilineage markers. Therefore, dermal substitutes support the growth of mesenchymal stromal cells from human skin, promising an effective tool for tissue engineering and regenerative technology.


Assuntos
Diferenciação Celular , Derme/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Regeneração/fisiologia , Pele Artificial , Pele/citologia , Biomarcadores , Western Blotting , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Derme/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/metabolismo , Engenharia Tecidual
16.
J Chem Neuroanat ; 57-58: 1-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24662146

RESUMO

Experimental ischemia results in cortical brain lesion followed by ischemic stroke. In this study, focal cerebral ischemia was induced in mice by occlusion of the middle cerebral artery. We studied cortical layers I, II/III, V and VI in the caudal forelimb area (CFA) and medial agranular cortex (AGm) from control and C57BL/6 mice induced with ischemic stroke. Based on our analysis of CFA and AGm motor cortex, significant differences were observed in the numbers of neurons, astrocytes and microglia in the superficial II/III and deep V cortical layers. Cellular changes were more prominent in layer V of the CFA with nuclear pyknosis, chromatin fragmentation, necrosis and degeneration, as well as, morphological evidence of apoptosis, mainly in neurons. As result, the CFA was more severely impaired than the AGm in this focal cerebral ischemic model, as evidenced by the proliferation of astrocytes, potentially resulting in neuroinflammation by microglia-like cells.


Assuntos
Isquemia Encefálica/patologia , Córtex Motor/patologia , Acidente Vascular Cerebral/patologia , Animais , Apoptose , Caspase 3/metabolismo , Contagem de Células , Membro Anterior/inervação , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Necrose
17.
DNA Cell Biol ; 32(2): 58-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23323927

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells with clinical interest. It has been reported that MSCs can be isolated from the human term placenta. We investigated the ability of human placenta-derived MSCs to differentiate into a neural phenotype in coculture assays with astrocytes obtained from neonatal rats. Placenta-derived MSCs were cocultured on a confluent monolayer of astrocytes obtained from the rat cerebellum to evaluate the differences in morphology. The extracellular matrix (ECM) produced by astrocytes as well as the growth factors produced by the astrocyte-conditioned medium were evaluated. The expression of the neural markers glial fibrillate acid protein (GFAP) and Nestin was studied in MSCs by immunocytochemistry. MSCs were able to respond to the astrocyte niche in coculture assays. They expressed the neural markers GFAP, Nestin, or ß-Tubulin III, followed by an outgrowth of cell processes. The ECM from astrocytes was not effective in inducing the neural phenotype in MSCs, although the expression of ß-Tubulin III was observed. When MSCs were cocultured with cerebellar astrocytes from newborn rats, a neural phenotype was achieved. This was determined by immunocytochemistry to GFAP, Nestin, or ß-Tubulin III and by morphological changes. It was achieved without the addition of exogenous differentiation factors. This demonstrates that placenta-derived MSCs may be able to differentiate into neural cell types when in direct contact with a neural environment.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Neurônios/fisiologia , Placenta/citologia , Nicho de Células-Tronco/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Transdiferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Neurogênese/fisiologia , Fenótipo , Gravidez , Ratos , Ratos Wistar
18.
Stem Cells Dev ; 22(8): 1241-51, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23308383

RESUMO

The neural crest (NC) is an attractive system for investigating the mechanisms underlying cell lineage diversification in higher vertebrates. The NC contains a mixed population of already defined precursors and multipotent cells that can give rise to a great variety of cell types, including glial cells and neurons of the peripheral nervous system, melanocytes, and smooth muscle cells (SMCs). Microenvironmental factors, such as the fibroblast growth factor 2 (FGF2), found along migratory paths and in target tissues, strongly influence the fate of multipotent NC precursors. We have previously demonstrated that the FGF2 promotes the differentiation of NC cells to glial phenotypes, while the epidermal growth factor induces NC differentiation to neurons and melanocytes. In the present study, we used mass cultures and single-cell culture assays to demonstrate that FGF2 influences NC cell differentiation and increases the proportion of multipotent progenitors. Furthermore, we demonstrate for the first time that avian tripotent glial, melanocyte and smooth muscle NC progenitors, as well as bipotent melanocyte and smooth muscle NC progenitors, are capable of self-renewal. FGF2 significantly stimulated the self-renewal of bipotent progenitor cells with glial cells and SMC potentials. These cells propagated for many generations and behaved as stem cells. These results suggest an important role of FGF2 in maintaining the stemness of avian NC cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Melanócitos/citologia , Microscopia de Fluorescência , Miócitos de Músculo Liso/citologia , Crista Neural/embriologia , Neuroglia/citologia , Codorniz
19.
Cell Biol Int ; 37(2): 181-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23319336

RESUMO

The neural crest (NC) corresponds to a collection of multipotent and oligopotent progenitors endowed with both neural and mesenchymal potentials. The derivatives of the NC at trunk level include neurons and glial cells of the peripheral nervous system. Despite the well-known influence of aflatoxins on the development of cancer, the issue of whether they also influence NC cells has not been yet addressed. In the present work, we have investigated the effects of aflatoxin B(1) on quail NC cells and the concomitant effects of the flavonoid hesperidin associated with this mycotoxin. We show for the first time that aflatoxin B(1) decreases the viability and the total number of glial and neuronal cells/field, although their proportions in relation to the total number of cells were not altered. Therefore, aflatoxin has no effect on NC differentiation. However, this compound was able to reduce NC proliferation and NC survival. Furthermore, the co-administration of hesperidin, a well-known polyphenolic protector of cell death, partially prevented the effect of aflatoxin B(1) . Taken together, our results demonstrate that aflatoxin B(1) is toxic to NC cells, an effect partially prevented by the flavonoid hesperidin. This study may contribute to the understanding of the effects of these compounds during early embryonic development and offer potentially more assertive diets and treatments for pregnant animals.


Assuntos
Aflatoxina B1/toxicidade , Flavonoides/farmacologia , Hesperidina/farmacologia , Crista Neural/metabolismo , Venenos/toxicidade , Animais , Apoptose , Morte Celular , Células Cultivadas , Crista Neural/efeitos dos fármacos , Codorniz/embriologia
20.
Cell Tissue Res ; 350(2): 305-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22855262

RESUMO

The neural crest (NC) corresponds to a collection of multipotent and oligopotent progenitors endowed with both neural and mesenchymal potentials. The derivatives of the NC at trunk level include neurons and glial cells of the peripheral nervous system in addition to melanocytes, smooth muscle cells and some endocrine cells. Environmental factors control the fate decisions of NC cells. Despite the well-known influence of flavonoids on the central nervous system, the issue of whether they also influence NC cells has not been yet addressed. Flavonoids are polyphenolic compounds that are integral components of the human diet. The biological activities of these compounds cover a very broad spectrum, from anticancer and antibacterial activities to inhibition of bone reabsorption and modulation of inflammatory response. In the present work, we have investigated the actions of the flavonoids hesperidin, rutin and quercetin on NC cells of quail, in vitro. We show for the first time, that hesperidin and rutin increase the viability of trunk NC cells in culture, without affecting cell differentiation and proliferation. The molecular mechanism of this action is dependent on ERK2 and PI3K pathways. Quercetin had no effect on NC progenitors. Taken together, these results suggest that flavonoids hesperidin and rutin increase NC cell survival, which may be useful against the toxicity of some chemicals during embryonic development.


Assuntos
Hesperidina/farmacologia , Crista Neural/citologia , Crista Neural/efeitos dos fármacos , Rutina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Crista Neural/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Codorniz , Quercetina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA