Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(28): 38173-38192, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723789

RESUMO

Increasing eutrophication of coastal waters generates disturbances in greenhouse gas (GHG) concentrations and emissions to the atmosphere that are still poorly documented, particularly in the tropics. Here, we investigated the concentrations and diffusive fluxes of carbon dioxide (CO2) and methane (CH4) in the urban-dominated Jacarepagua Lagoon Complex (JLC) in Southeastern Brazil. This lagoonal complex receives highly polluted freshwater and shows frequent occurrences of anoxia and hypoxia and dense phytoplankton blooms. Between 2017 and 2018, four spatial surveys were performed (dry and wet conditions), with sampling in the river waters that drain the urban watershed and in the lagoon waters with increasing salinities. Strong oxygen depletion was found in the rivers, associated with extremely high values of partial pressure of CO2 (pCO2; up to 20,417 ppmv) and CH4 concentrations (up to 288,572 nmol L-1). These high GHG concentrations are attributed to organic matter degradation from untreated domestic effluents mediated by aerobic and anaerobic processes, with concomitant production of total alkalinity (TA) and dissolved inorganic carbon (DIC). In the lagoon, GHG concentrations decreased mainly due to dilution with seawater and degassing. In addition, the phytoplankton growth and CH4 oxidation apparently consumed some CO2 and CH4, respectively. TA concentrations showed a marked minimum at salinity of ~20 compared to the two freshwater and marine end members, indicating processes of re-oxidation of inorganic reduced species from the low-salinity region, such as ammonia, iron, and/or sulfides. Diffusive emissions of gases from the entire lagoon ranged from 22 to 48 mmol C m-2 d-1 for CO2 and from 2.2 to 16.5 mmol C m-2 d-1 for CH4. This later value is among the highest documented in coastal waters. In terms of global warming potential (GWP) and CO2 equivalent emissions (CO2-eq), the diffusive emissions of CH4 were higher than those of CO2. These results highlight that highly polluted coastal ecosystems are hotspots of GHG emissions to the atmosphere, which may become increasingly significant in future global carbon budgets.


Assuntos
Gases de Efeito Estufa , Brasil , Dióxido de Carbono/análise , Ecossistema , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise
2.
Appl Environ Microbiol ; 79(12): 3770-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584789

RESUMO

Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.


Assuntos
Agaricales/enzimologia , Formigas/fisiologia , Celulases/genética , Genoma Fúngico/genética , Simbiose/fisiologia , Agaricales/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Celulases/metabolismo , Análise por Conglomerados , Herbivoria/fisiologia , Lignina/metabolismo , Dados de Sequência Molecular , Panamá , Filogenia , Plantas/metabolismo , Proteômica , Análise de Sequência de DNA , Homologia de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA