RESUMO
The zebrafish (Danio rerio) has become a valuable model organism for behavioral studies examining learning and memory. Its diurnal circadian rhythm and characterized sleep-like state make it comparable to mammals, features that have contributed to establishing this small vertebrate as a translational model for sleep research. Despite sleep being an evolutionarily conserved behavior, its mechanisms and functions are still debated. Sleep deprivation is commonly associated with decreased attention, reduced responsiveness to external stimuli, altered locomotor activity and impaired performance on cognitive tasks. In the current study, we examined the effects of partial and total sleep deprivation on zebrafish learning performance in an active avoidance conditioning paradigm. In addition, we examined the effects of two drugs known to alter sleep (alcohol and melatonin) on learning performance in sleep deprived animals. Our results suggest that although partial sleep deprivation did not alter learning performance, total sleep deprivation was found to significantly impair behavioral responses to the electric shock as well as avoidance learning. However, when sleep deprived fish were treated with alcohol the night before the learning task, learning performance was similar to the control group. In contrast, melatonin treatment did not alter learning performance in sleep deprived animals. We conclude that the zebrafish is a sensitive tool for investigating the effects of sleep deprivation on cognitive performance and may be a useful model for dissecting the mechanisms underlying learning and memory.
Assuntos
Aprendizagem da Esquiva/fisiologia , Cognição/fisiologia , Memória/fisiologia , Privação do Sono/psicologia , Sono/fisiologia , Peixe-Zebra/fisiologia , Animais , Ritmo Circadiano/fisiologia , Condicionamento Operante/fisiologiaRESUMO
Learning and memory are vital to an animal's survival, and numerous factors can disrupt cognitive performance. Sleep is an evolutionarily conserved physiological process known to be important for the consolidation of learning and memory. The zebrafish has emerged as a powerful model organism sharing organizational and functional characteristics with other vertebrates, providing great translational relevance. In our study, we used a simple spatial associative learning task to quantify the effects of sleep deprivation (partial vs. total) on learning performance in zebrafish, using an animated conspecific shoal image as a reward. Control animals maintained on a regular light:dark cycle were able to acquire the association between the unconditioned and conditioned stimulus, reinforcing zebrafish as a valid and reliable model for appetitive conditioning tasks. Notably, sleep deprivation did not alter the perception of and response to the conspecific image. In contrast, although partial sleep deprivation did not impair cognitive performance, total sleep deprivation significantly impaired performance on the associative learning task. Our results suggest that sleep is important for learning and memory, and that the effects of sleep deprivation on these processes can be investigated in zebrafish.