Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 15(3): e1700511, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29381265

RESUMO

The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (-)-hamanasic acid A ((-)-HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)-accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (-)-HAA accompanying surface secreted products: compounds 4-hydroxyacetophenone (piceol; 1) and 2-hydroxy-5-methoxyacetophenone (2), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon- and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant-pathogen and plant-plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high-valued bioproducts.


Assuntos
Asteraceae/química , Óleos Voláteis/química , Tricomas/química , Asteraceae/metabolismo , Estrutura Molecular , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Tricomas/metabolismo
2.
Phytochemistry ; 77: 140-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22245633

RESUMO

An aqueous extract from Flourensia campestris (Asteraceae) dry aerial parts showed strong inhibition on the germination and growth of Lactuca sativa. Based on bio-guided chromatographic fractionation of aq. extracts from dry and fresh leaves and spectroscopic means, (-)-hamanasic acid A (7-carboxy-8-hydroxy-1(2), 12(13)-dien-bisabolene (1)) was isolated as the most inhibitory active principle on germination (ECg(50)=2.9 mM) and on root (ECr(50)=1.5 mM)/shoot (ECs(50)=2.0 mM) growth. As measured by GC, and correlated with a simple designed 2D-TLC, compound 1 was distributed throughout the plant, with a remarkably high concentration (1.6%) in the leaves and the inflorescences. At least a quarter of the amount of 1 was found in aqueous extracts suggesting that leaching would be a key route for its release into the environment. By contrast, leaf essential oils (HD) between 0.5 and 1.5 µl ml(-1) did not show herbicidal effects and 1 was not found in them (TLC) nor among volatiles (HS-SPME). Volatile compositions were assessed by GC-FID and GC-MS and led to the identification of 23 compounds (4 monoterpenes and 19 sesquiterpenes) with a wide seasonal (spring-summer%) variation, represented principally by bicyclo-germacrene (37-6%), spathulenol (4-32%), globulol (20-0%), beta-caryophyllene (15-6%), caryophyllene oxide (1-13%) and bicycloelemene (10-1%), respectively. The high amount of 1 in F. campestris together with its feasibility of being extracted with water suggest that (-)-hamanasic acid A is an allelochemical in this species. Species-specific studies must be carried out to evaluate the potential of 1 as a natural herbicidal compound.


Assuntos
Asteraceae/química , Lactuca/efeitos dos fármacos , Sesquiterpenos/toxicidade , Fracionamento Químico , Cromatografia Gasosa , Germinação/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA