Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 543: 37-48, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38401710

RESUMO

Abnormal cognitive and sensorial properties have been reported in patients with psychiatric and neurodevelopmental conditions, such as attention deficit hyperactivity disorder (ADHD). ADHD patients exhibit impaired dopaminergic signaling and plasticity in brain areas related to cognitive and sensory processing. The spontaneous hypertensive rat (SHR), in comparison to the Wistar Kyoto rat (WKY), is the most used genetic animal model to study ADHD. Brain neurotrophic factor (BDNF), critical for midbrain and hippocampal dopaminergic neuron survival and differentiation, is reduced in both ADHD subjects and SHR. Physical exercise (e.g. swimming) promotes neuroplasticity and improves cognition by increasing BDNF and irisin. Here we investigate the effects of gestational swimming on sensorial and behavioral phenotypes, striatal dopaminergic parameters, and hippocampal FNDC5/irisin and BDNF levels observed in WKY and SHR. Gestational swimming improved nociception in SHR rats (p = 0.006) and increased hippocampal BDNF levels (p = 0.02) in a sex-dependent manner in adolescent offspring. Sex differences were observed in hippocampal FNDC5/irisin levels (p = 0.002), with females presenting lower levels than males. Our results contribute to the notion that swimming during pregnancy is a promising alternative to improve ADHD phenotypes in the offspring.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Ratos , Feminino , Masculino , Animais , Adolescente , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fibronectinas , Nociceptividade , Encéfalo/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Modelos Animais de Doenças
2.
Pediatr Res ; 82(3): 544-553, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28426648

RESUMO

BackgroundHypoxia-ischemia (HI) is a major cause of neurological damage in preterm newborn. Swimming during pregnancy alters the offspring's brain development. We tested the effects of swimming during pregnancy in the very immature rat brain.MethodsFemale Wistar rats (n=12) were assigned to the sedentary (SE, n=6) or the swimming (SW, n=6) group. From gestational day 0 (GD0) to GD21 the rats in the SW group were made to swim for 20 min/day. HI on postnatal day (PND) 3 rats caused sensorimotor and cognitive impairments. Animals were distributed into SE sham (SESH), sedentary HIP3 (SEHI), swimming sham (SWSH), and swimming HIP3 (SWHI) groups. At PND4 and PND5, Na+/K+-ATPase activity and brain-derived neurotrophic factor (BDNF) levels were assessed. During lactation and adulthood, neurological reflexes, sensorimotor, anxiety-related, and cognitive evaluations were made, followed by histological assessment at PND60.ResultsAt early stages, swimming caused an increase in hippocampal BDNF levels and in the maintenance of Na+/K+-ATPase function in the SWHI group. The SWHI group showed smaller lesions and the preservation of white matter tracts. SEHI animals showed a delay in reflex maturation, which was reverted in the SWHI group. HIP3 induced spatial memory deficits and hypomyelination in SEHI rats, which was reverted in the SWHI group.ConclusionSwimming during pregnancy neuroprotected the brains against HI in very immature neonatal rats.


Assuntos
Hipóxia-Isquemia Encefálica/prevenção & controle , Neuroproteção , Natação , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Lobo Parietal/enzimologia , Gravidez , Ratos , Ratos Wistar , Reflexo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA