Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003524

RESUMO

Surface Electromyography (sEMG) signal processing has a disruptive technology potential to enable a natural human interface with artificial limbs and assistive devices. However, this biosignal real-time control interface still presents several restrictions such as control limitations due to a lack of reliable signal prediction and standards for signal processing among research groups. Our paper aims to present and validate our sEMG database through the signal classification performed by the reliable forms of our Extreme Learning Machines (ELM) classifiers, used to maintain a more consistent signal classification. To perform the signal processing, we explore the use of a stochastic filter based on the Antonyan Vardan Transform (AVT) in combination with two variations of our Reliable classifiers (denoted R-ELM and R-Regularized ELM (RELM), respectively), to derive a reliability metric from the system, which autonomously selects the most reliable samples for the signal classification. To validate and compare our database and classifiers with related papers, we performed the classification of the whole of Databases 1, 2, and 6 (DB1, DB2, and DB6) of the NINAProdatabase. Our database presented consistent results, while the reliable forms of ELM classifiers matched or outperformed related papers, reaching average accuracies higher than 99 % for the IEEdatabase, while average accuracies of 75 . 1 % , 79 . 77 % , and 69 . 83 % were achieved for NINAPro DB1, DB2, and DB6, respectively.


Assuntos
Membros Artificiais , Bases de Dados Factuais , Eletromiografia/tendências , Movimento/fisiologia , Adulto , Algoritmos , Amputados , Feminino , Humanos , Aprendizado de Máquina , Masculino , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Extremidade Superior/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA