Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 28(27): 275702, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28525395

RESUMO

The room temperature photoluminescence from ZnO/MgO core/shell nanowires (NWs) grown by a simple two-step vapor transport method was studied for various MgO shell widths (w). Two distinct effects induced by the MgO shell were clearly identified. The first one, related to the ZnO/MgO interface formation, is evidenced by strong enhancements of the zero-phonon and first phonon replica of the excitonic emission, which are accompanied by a total suppression of its second phonon replica. This effect can be explained by the reduction of the band bending within the ZnO NW core that follows the removal of atmospheric adsorbates and associated surface traps during the MgO growth process on one hand, and a reduced exciton-phonon coupling as a result of the mechanical stabilization of the outermost ZnO NW monolayers by the MgO shell on the other hand. The second effect is the gradual increase of the excitonic emission and decrease in the defect related emission by up to two and one orders of magnitude, respectively, when w is increased in the ∼3-17 nm range. Uniaxial strain build-up within the ZnO NW core with increasing w, as detected by x-ray diffraction measurements, and photocarrier tunneling escape from the ZnO core through the MgO shell enabled by defect-states are proposed as possible mechanisms involved in this effect. These findings are expected to be of key significance for the efficient design and fabrication of ZnO/MgO NW heterostructures and devices.

2.
Nanotechnology ; 27(42): 425501, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27622391

RESUMO

We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 µA cm(-2) mM(-1) in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA