Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(9): e1012537, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259747

RESUMO

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.


Assuntos
Elasticidade , Infecções por HIV , HIV-1 , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Internalização do Vírus , Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Simulação de Dinâmica Molecular , Microscopia de Força Atômica , Poro Nuclear/metabolismo , Indóis , Fenilalanina/análogos & derivados
3.
ArXiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961741

RESUMO

Enumerated threat agent lists have long driven biodefense priorities. The global SARS-CoV-2 pandemic demonstrated the limitations of searching for known threat agents as compared to a more agnostic approach. Recent technological advances are enabling agent-agnostic biodefense, especially through the integration of multi-modal observations of host-pathogen interactions directed by a human immunological model. Although well-developed technical assays exist for many aspects of human-pathogen interaction, the analytic methods and pipelines to combine and holistically interpret the results of such assays are immature and require further investments to exploit new technologies. In this manuscript, we discuss potential immunologically based bioagent-agnostic approaches and the computational tool gaps the community should prioritize filling.

4.
bioRxiv ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37808653

RESUMO

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid 1,2 . Recent studies have shown that HIV- 1 cores enter the nucleus prior to capsid disassembly 3-5 . Interactions with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Suppressors of the mutants restored elasticity and rescued infectivity and nuclear entry. Elasticity was also reduced by treatment of cores with the capsid-targeting compound PF74 and the antiviral drug lenacapavir. Our results indicate that capsid elasticity is a fundamental property of the HIV-1 core that enables its passage through the nuclear pore complex, thereby facilitating infection. These results provide new insights into the mechanisms of HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA