Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14635, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918448

RESUMO

In hyperarid environments, vegetation is highly fragmented, with plant populations exhibiting non-random biphasic structures where regions of high biomass density are separated by bare soil. In the Atacama Desert of northern Chile, rainfall is virtually nonexistent, but fog pushed in from the interior sustains patches of vegetation in a barren environment. Tillandsia landbeckii, a plant with no functional roots, survives entirely on fog corridors as a water source. Their origin is attributed to interaction feedback among the ecosystem agents, which have different spatial scales, ultimately generating banded patterns as a self-organising response to resource scarcity. The interaction feedback between the plants can be nonreciprocal due to the fact that the fog flows in a well-defined direction. Using remote sensing analysis and mathematical modelling, we characterise the orientation angle of banded vegetation patterns with respect to fog direction and topographic slope gradient. We show that banded vegetation patterns can be either oblique or horizontal to the fog flow rather than topography. The initial and boundary conditions determine the type of the pattern. The bifurcation diagram for both patterns is established. The theoretical predictions are in agreement with observations from remote sensing image analysis.

2.
Chaos ; 30(11): 110401, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33261348

RESUMO

This Focus Issue on instabilities and nonequilibrium structures includes invited contributions from leading researchers across many different fields. The issue was inspired in part by the "VII Instabilities and Nonequilibrium Structures 2019" conference that took place at the Pontifica Universidad Católica de Valparaiso, Chile in December 2019. The conference, which is devoted to nonlinear science, is one of the oldest conferences in South America (since December 1985). This session has an exceptional character since it coincides with the 80th anniversary of Professor Enrique Tirapegui. We take this opportunity to highlight Tirapegui's groundbreaking contributions in the field of random perturbations experienced by macroscopic systems and in the formation of spatiotemporal structures in such systems operating far from thermodynamic equilibrium. This issue addresses a cross-disciplinary area of research as can be witnessed by the diversity of systems considered from inert matter such as photonics, chemistry, and fluid dynamics, to biology.


Assuntos
Termodinâmica , Chile
3.
Sci Rep ; 6: 33703, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27650430

RESUMO

Desertification due to climate change and increasing drought periods is a worldwide problem for both ecology and economy. Our ability to understand how vegetation manages to survive and propagate through arid and semiarid ecosystems may be useful in the development of future strategies to prevent desertification, preserve flora-and fauna within-or even make use of scarce resources soils. In this paper, we study a robust phenomena observed in semi-arid ecosystems, by which localized vegetation patches split in a process called self-replication. Localized patches of vegetation are visible in nature at various spatial scales. Even though they have been described in literature, their growth mechanisms remain largely unexplored. Here, we develop an innovative statistical analysis based on real field observations to show that patches may exhibit deformation and splitting. This growth mechanism is opposite to the desertification since it allows to repopulate territories devoid of vegetation. We investigate these aspects by characterizing quantitatively, with a simple mathematical model, a new class of instabilities that lead to the self-replication phenomenon observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA