Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Endocrinol ; 2019: 7396716, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178910

RESUMO

A considerable increase in endocrine abnormalities has been reported over the last few decades worldwide. A growing exposure to endocrine-disrupting chemicals (EDCs) can be one of the causes of endocrine disorders in populations, and these disorders are not only restricted to the metabolic hormone system but can also cause abnormal functions. Thyroid hormone (TH) disruption is defined as an abnormal change in TH production, transport, function, or metabolism, which results in some degree of impairment in body homeostasis. Many EDCs, including organotin compounds (OTCs), are environmental contaminants that are commonly found in antifouling paints used on ships and in several other industrial procedures. OTCs are obesogenic and can disrupt TH metabolism; however, abnormalities in thyroid function resulting from OTC exposure are less well understood. OTCs, one of the most prevalent EDCs that are encountered on a daily basis, modulate the thyroid axis. In most toxicology studies, it has been reported that OTCs might contribute to hypothyroidism.

2.
Life sci, v. 231, 116556, ago. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2780

RESUMO

Triiodothyronine (T3) and estrogen (E2) play important roles in the bone remodeling process and signaling of receptor activator of the nuclear factor-kappa ß (RANKL) and osteoprotegerin (OPG) expressed by osteoblasts. However, little is known of the molecular action of these hormones in conditions of hyperthyroidism and associated E2 in human cells. AIMS: This study evaluated the effects of the physiological concentration of E2 (10?nM), alone or in association with physiological (1nM) and supraphysiological (10nM) concentrations of T3, on RANKL and OPG gene expression in human osteoblasts. MAIN METHODS: Alkaline phosphatase and osteocalcin assays were performed to verify the presence of mature osteoblasts. After mimicking the experimental hyperthyroidism in osteoblasts untreated or treated with E2, RANKL and OPG gene expression was analyzed by real-time PCR and protein expression by western Blot and ELISA. Alizarin Red staining analyzed the amount of bone matrix after hormonal treatments. KEY FINDINGS: E2 enhanced the gene expression of OPG when associated with 1nM and 10nMT3. E2 was able to restore the bone matrix after an initial decrease using 1nM and 10nMT3. The protective effect of E2 on the RANKL and OPG signaling pathway was demonstrated. E2 restored the bone matrix induced by experimental hyperthyroidism. SIGNIFICANCE: The data highlight the importance of E2 to maintain OPG expression and osteoblast activity against possible loss of bone mass, especially in conditions where T3 is in excess.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA