Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 17(1): 111, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28486928

RESUMO

BACKGROUND: The Pleistocene closure of Isthmus of Panama, separating the basins of the Eastern Pacific and the Caribbean Sea, created a unique natural experiment that reveals how marine faunas respond to environmental change. To explore how fishes have been affected by this tectonic event, I compare transisthmian patterns in phylogeny and morphology for geminate lineages in two families, Eleotridae (sleepers) and Apogonidae (cardinalfishes). RESULTS: Time-calibrated phylogenies for these families show different diversification patterns. In Eleotridae, several independent shallow instances of transisthmian divergences occur, with one or a few species on either side of the Isthmus. Among Apogonidae, a single clade of Eastern Pacific species is nested within a broad Caribbean radiation that also includes a species known from the Mediterranean. Divergence time estimates for taxa isolated by closure of the Isthmus are broadly congruent. Hypotheses dated with deeper, fossil-based legacy calibrations put the divergences in the Miocene at 7.4-15.1 Ma, while those estimated with a shallow biogeographic calibration of final Isthmus closure range from 5.1 to 9.9 Ma, in the late Miocene/early Pliocene. Eleotridae are more euryhaline than Apogonidae, but do not exhibit shallower transisthmian divergences. In both families, descendent lineages on either side of the Isthmus of Panama exhibit significant shape differences, although that distinction disappears for Apogonidae when I apply a correction for phylogenetic relationships. To evaluate the tempo and mode of continuous character evolution, I fit several single and multiple rate evolutionary models to morphometric data reconstructed on the Apogonidae phylogeny. I find that the most highly favored model, as estimated on both legacy and isthmus calibrated hypotheses, is a multiple rate Ornstein-Uhlbeck model, with a mosaic of rate shifts postulated for shape changes among fishes in the Caribbean and Eastern Pacific. CONCLUSIONS: Although many transisthmian taxa have been compared and their phylogenies calibrated to estimate the dates associated with population sundering, few studies correlate these timing estimates with morphological change. I show that in transisthmian fish lineages, morphometric distinctions are detectable across the Isthmus, and that rates and patterns of shape change have also shifted, with variable manifestations across the body and between the Caribbean and Eastern Pacific.


Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Fósseis/anatomia & histologia , Especiação Genética , Filogenia , Animais , Evolução Biológica , Evolução Molecular , Peixes/genética , Panamá
2.
BMC Evol Biol ; 15: 109, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062690

RESUMO

BACKGROUND: Antarctic notothenioids are an impressive adaptive radiation. While they share recent common ancestry with several species-depauperate lineages that exhibit a relictual distribution in areas peripheral to the Southern Ocean, an understanding of their evolutionary origins and biogeographic history is limited as the sister lineage of notothenioids remains unidentified. The phylogenetic placement of notothenioids among major lineages of perciform fishes, which include sculpins, rockfishes, sticklebacks, eelpouts, scorpionfishes, perches, groupers and soapfishes, remains unresolved. We investigate the phylogenetic position of notothenioids using DNA sequences of 10 protein coding nuclear genes sampled from more than 650 percomorph species. The biogeographic history of notothenioids is reconstructed using a maximum likelihood method that integrates phylogenetic relationships, estimated divergence times, geographic distributions and paleogeographic history. RESULTS: Percophis brasiliensis is resolved, with strong node support, as the notothenioid sister lineage. The species is endemic to the subtropical and temperate Atlantic coast of southern South America. Biogeographic reconstructions imply the initial diversification of notothenioids involved the western portion of the East Gondwanan Weddellian Province. The geographic disjunctions among the major lineages of notothenioids show biogeographic and temporal correspondence with the fragmentation of East Gondwana. CONCLUSIONS: The phylogenetic resolution of Percophis requires a change in the classification of percomorph fishes and provides evidence for a western Weddellian origin of notothenioids. The biogeographic reconstruction highlights the importance of the geographic and climatic isolation of Antarctica in driving the radiation of cold-adapted notothenioids.


Assuntos
Perciformes/classificação , Perciformes/genética , Animais , Regiões Antárticas , Evolução Molecular , Proteínas de Peixes/genética , Funções Verossimilhança , Perciformes/anatomia & histologia , Filogenia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA