Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027994

RESUMO

Biological treatments have become insufficient to treat municipal wastewater with greater toxicity and excess nitrogen and phosphate species, thus affecting the organisms that consume the water. In this work, a process was implemented for the removal of nutrients through three stages: stage A, complete aeration (24 h, 43 months); stage B, decreased aeration (12 h, 17 months); and stage C, decreased aeration with biocalcium (12 h, 19 months). The addition of biocalcium from eggshell promoted the formation of flocks, which resulted in the removal of nitrites (61 %), nitrates (84 %), total nitrogen (57 %), total phosphorus (8.3 %), sedimentable solids (50 %), total suspended solids (69 %), BOD5 (76 %), helminth eggs (50 %) and fecal coliforms (54 %). The statistical analyses in the three stages indicated that there is a strong correlation between the concentration of fats and oils and the removal of sedimentable solids and total suspended solids, since these parameters were correlated by 97 and 89 %, respectively. Sedimentable solids were correlated with total suspended solids by 94 %, while nitrates and total nitrogen were correlated 92 %, which favors the removal of nutrients in wastewater. The increase in the concentration of nitrogen in the sludge in stage C generated a C:N ratio of 7.98. This ratio shows that the sludge is feasible for use as a mediator of soils and a biofertilizer because of the high contents of calcium, phosphorus and nitrogen. In addition, biocalcium promoted the precipitation of hydroxyapatite, struvite, calcite and quartz. In general, the three stages of the treatment contributed to the stabilization of the wastewater treatment plant (WWTP) in an efficient, economical, and safe way.

2.
Chemosphere ; 323: 138254, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36858121

RESUMO

H2S is a gaseous compound that contributes to air pollution. In this work, the electrochemical oxidation treatment of gaseous streams polluted with H2S is evaluated using a jet mixer and electrochemical cell device, in which the performance of electrolytic and electro-Fenton assisted absorption processes are compared. Results demonstrate the feasibility of both processes to remove H2S, reaching coulombic efficiencies of nearly 100% in the electrolytic assisted absorption, and 70-80% in the electro-Fenton assisted absorption. Aqueous solutions containing phosphate salts as electrolyte were found to be suitable as absorbents for the process. Efficiency in the cathodic production of H2O2 in these solutions using the experimental device was found to be as high as 32.8% (1.184 mgH2O2/min) at 12 °C and atmospheric pressure. Sequential formation of SO2 and SO3 is obtained by the oxidation of H2S contained in the gas. These species are hydrolysed, and a part remained in the absorbent as SO32- and SO42-, while the rest is dragged in the outlet gas. SO3 production is promoted by electrolytic assisted absorption and polysulphides by the electro-Fenton technology. Low concentrations of elemental sulphur are detected in the solid suspensions formed during the process.


Assuntos
Gases , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Eletrólise , Oxirredução , Eletrodos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA