Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(15): 2795-2810, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38991155

RESUMO

The escalating prevalence of Parkinson's disease (PD) underscores the need for innovative therapeutic interventions since current palliative measures, including the standard l-Dopa formulations, face challenges of tolerance and side effects while failing to address the underlying neurodegenerative processes. Here, we introduce DAD9, a novel conjugate molecule that aims to combine symptomatic relief with disease-modifying strategies for PD. Crafted through knowledge-guided chemistry, the molecule combines a nonantibiotic doxycycline derivative with dopamine, preserving neuroprotective attributes while maintaining dopaminergic agonism. This compound exhibited no off-target effects on PD-relevant cell functions and sustained antioxidant and anti-inflammatory properties of the tetracycline precursor. Furthermore, it effectively interfered with the formation and seeding of toxic α-synuclein aggregates without producing detrimental oxidative species. In addition, DAD9 was able to activate dopamine receptors, and docking simulations shed light onto the molecular details of this interaction. These findings position DAD9 as a potential neuroprotective dopaminergic agonist, promising advancements in PD therapeutics.


Assuntos
Dopamina , Desenho de Fármacos , Fármacos Neuroprotetores , Doença de Parkinson , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Humanos , Dopamina/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/efeitos dos fármacos , Doxiciclina/farmacologia , Doxiciclina/síntese química , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/síntese química , Simulação de Acoplamento Molecular , Animais
2.
Food Funct ; 13(15): 8056-8067, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35791824

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by deterioration and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in motor deficits. Many studies have revealed an inverse relationship between thiamine consumption and susceptibility to PD. Previously, Lactiplantibacillus (L.) plantarum CRL 1905 was selected as thiamine-producing lactic acid bacteria (LAB), and its amprolium-resistant clone, L. plantarum CRL 1905*, was able to produce higher levels of this vitamin and inhibited neuronal death in an in vitro model. The present work aimed to evaluate the neuroprotective effect of these thiamine-producing LAB in an in vivo parkinsonian mouse model. Male C57BL/6 mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were orally administered with one of the LAB strains or commercial thiamine for 1 month. The administration of either thiamine-producing LAB prevented the motor deficits of mice similar to the effects of the commercial vitamin. These benefits were associated with increased number of tyrosine hydroxylase positive (TH+) neurons in the SNpc. The evaluation of the inflammatory response caused by the neurotoxin showed that both LAB decreased pro-inflammatory cytokines in serum; moreover, the strain selected as the higher thiamine producer showed the best anti-inflammatory effect locally in the brain and significantly decreased the levels of IL-6, TNF-α, IFN-γ and MCP-1, which remained similar to the levels of healthy control animals. These results demonstrated that thiamine-producing L. plantatum CRL 1905* has the potential to be used as part of a strategy to prevent or to complement the treatments of neurodegenerative diseases such as PD. A limitation of this study is that we cannot guarantee whether LAB are capable of producing thiamine in the intestinal tract or release the vitamin after lysis; however, the results show that thiamine production by L. plantarum CRL 1905 is implicated in the observed effect, in addition to other benefits associated with the LAB strain that are also involved and are currently under study.


Assuntos
Lactobacillales , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Substância Negra , Tiamina , Vitaminas/farmacologia
3.
Neurochem Res ; 47(5): 1269-1279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35113305

RESUMO

Oxidative stress and inflammatory processes might contribute to the cascade of events leading Parkinson disease (PD); and vitamins such as riboflavin can exert protection on vulnerable neurons in neurodegenerative conditions. Previously, it was demonstrated that a mixture of lactic acid bacteria (including a riboflavin-producing strain) improved motor skills in a parkinsonian model. The aim of the present work was to investigate the neuroprotective potential of Lactiplantibacillus (L.) plantarum CRL2130, a riboflavin-producing strain in PD models. In vitro, N2a differentiated neurons were exposed the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or commercial riboflavin. In vivo, adult male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid, and received orally L. plantarum CRL2130, L. plantarum CRL725 (parent strain that produces low levels of riboflavin) or commercial vitamin. Results showed that when N2a cells were incubated with intracellular extract from L. plantarum CRL2130 maintained the viability, and significantly decreased the release of IL-6 and the formation of reactive oxygen species (ROS), all affected by MPP+. In vivo, the administration of L. plantarum CRL2130 attenuated motor deficits and prevented dopaminergic neuronal death. Decrease of pro-inflammatory cytokines and increase of IL-10 in both serum and brain were observed in samples from mice that received L. plantarum CRL2130 compared to MPTP control group (without treatment). In addition, these beneficial effects were similar or improved when compared with animals that received commercial riboflavin. In conclusion, L. plantarum CRL2130 showed a neuroprotective effect in both PD models through anti-oxidant/anti-inflammatory mechanisms.


Assuntos
Lactobacillales , Fármacos Neuroprotetores , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Riboflavina/farmacologia , Riboflavina/uso terapêutico
4.
Appl Microbiol Biotechnol ; 105(5): 2097-2107, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33547923

RESUMO

Thiamine or vitamin B1, an essential micronutrient mainly involved in energy production, has a beneficial impact on the nervous system, and its deficiency can be associated with the development and progression of neurodegenerative diseases. The aim of this work was to select thiamine-producing lactic acid bacteria (LAB) and study their physiological effects using neuron cell cultures. In this study, 23 LAB able to produce thiamine were identified by growth in thiamine-free synthetic medium. Intra- and extracellular thiamine concentrations were determined using a microbiological method and results confirmed by HPLC techniques. A wide variation in vitamin production was found showing that this property was not only species specific but also a strain-dependent trait. Five of these strains were pre-selected for their capacity to produce higher concentrations of thiamine. Only the pre-treatment with the intracellular extract of Lactiplantibacillus (L.) plantarum CRL 1905 increased significantly neuronal survival in N2a cells' model of neurotoxicity (MPP+) with thiamine deficiency conditions (amprolium). Furthermore, amprolium-resistant variants of CRL 1905 were isolated by exposition of the strain to increasing concentrations of this toxic thiamine analogue. The variant A9 was able to increase more than 2 times the intracellular thiamine production of the original strain. A9 bacterial extract significantly prevented neuronal cell death and the increase of IL-6. The amprolium-resistant strain A9 showed a modulating and neuroprotective effect in an in vitro model of neurotoxicity constituting a potential bio-strategy to counteract thiamine deficiencies and thus prevent or treat neurodegenerative diseases. KEY POINTS: • LAB can produce thiamine in a species- and strain-dependant manner. • L. plantarum CRL 1905 significantly reduce MPP+-induced neurotoxicity in N2a cells. • Amprolium-resistant strain A9 has neuroprotective effect and prevents IL-6 increase.


Assuntos
Lactobacillales , Doenças Neurodegenerativas , Amprólio , Morte Celular , Humanos , Doenças Neurodegenerativas/prevenção & controle , Tiamina
5.
Plant Physiol Biochem ; 97: 443-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26562675

RESUMO

The newly characterized elicitor AsES obtained from Acremonium strictum induces a strong defence response in strawberry plants and confers plants resistance against the fungal pathogen Colletotricum acutatum the casual agent of anthracnose disease. Previous studies showed that AsES causes the accumulation of reactive oxygen species (ROS) that peaked 4 h post treatment (hpt), but due to the experimental approach used it was not clear whether the accumulation of ROS observed was intracellular or extracellular or took place as a single peak. By using a different experimental setup, a more complex early events associated to the activation of the innate immunity were observed. In this paper we report that strawberry plant cells treated with AsES exhibits a triphasic production of H2O2 and a rapid intracellular accumulation of NO. The first phase consists in a progressive extracellular accumulation of H2O2 that starts immediately after the treatment with AsES and is preceded by a rapid and transient cell membrane depolarization. During this phase takes place also a rapid intracellular accumulation of NO. Microscopic observations of mesophyll cells treated with AsES reveals that NO accumulates at the chloroplast. After the first extracellular H2O2 production phase, two intracellular H2O2 accumulation events occur, the first 2 hpt, and the second 7 hpt. Cells treated with AsES also show a transient increase of ion leakage, and a progressive alkalinization of the extracellular medium.


Assuntos
Acremonium/química , Membrana Celular/metabolismo , Fragaria/metabolismo , Proteínas Fúngicas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Óxido Nítrico/metabolismo , Explosão Respiratória/efeitos dos fármacos , Álcalis/metabolismo , Sulfonatos de Arila/metabolismo , Membrana Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Fluorescência , Fragaria/citologia , Fragaria/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Íons , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Suspensões , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA