RESUMO
The complex behavior that occurs when traffic lights are synchronized is studied. Two strategies are considered: all lights in phase, and a "green wave" with a propagating green signal. It is found that traffic variables such as traveling time, velocity, and fuel consumption, near resonance, follow critical scaling laws. For the green wave, it is shown that time and velocity scaling laws hold even for random separation between traffic lights. These results suggest the concept of transient resonances, which can be induced by adaptively changing the phase of traffic lights. This may be important to consider when designing strategies for traffic control in cities, where short trajectories, and thus transient solutions, are likely to be relevant.
RESUMO
We introduce a microscopic traffic model, based on kinematic behavior, which consists of a single vehicle traveling through a sequence of traffic lights that turn on and off with a specific frequency. The reconstructed function that maps the state of the vehicle from light to light displays complex behavior for certain conditions. This chaotic behavior, which arises by the discontinuous nature of the map, displays an essential ingredient in traffic patterns and could be of relevance in studying traffic situations.