Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 100(12): e02858, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31365762

RESUMO

We identify changes in the functional composition of vascular epiphytes along a tropical elevational gradient with the aim of quantifying the role of climate in determining the assembly of epiphyte communities. We measured seven leaf functional traits (leaf area, specific leaf area, leaf dry-matter content, leaf thickness, force to punch, stomatal density, and potential conductance index) in the 163 most abundant epiphyte species recorded across 10 sites located along an elevational gradient between 60 and 2,900 m above sea level in the Colombian Andes. We grouped the epiphyte species into seven hierarchical functional groups according to their most characteristic leaf traits. Along the elevational gradient, the two main independent leaf trait dimensions that distinguished community assemblages were defined primarily by leaf area-photosynthetic (LAPS) and mass-carbon (LMCS) gradients. Mean annual temperature was the main determinant of species position along LAPS. In contrast, local changes in specific leaf area due to variation in the epiphytes' relative height of attachment was the main determinant of their position along the LMCS. Our findings indicate that epiphytic plant leaves have evolved to optimize and enhance photosynthesis through a leaf area-based strategy and carbon acquisition through investments in construction costs of leaf area per unit of biomass that aim to regulate light capture and tissue development. Given that most studies of plant functional traits neglect vascular epiphytes, our quantification of the multiple dimensions of epiphyte leaf traits greatly augments our understanding of vascular plant function and adaptation to changing environments.


Assuntos
Fotossíntese , Folhas de Planta , Clima , Colômbia , Plantas , Clima Tropical
2.
Glob Chang Biol ; 25(11): 3591-3608, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343099

RESUMO

Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.


Assuntos
Ecossistema , Florestas , Brasil , Mudança Climática , Estações do Ano
3.
New Phytol ; 222(3): 1284-1297, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30720871

RESUMO

Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine-scale observations critical to revealing ecological mechanisms underlying these changes have been lacking. To investigate fine-scale variation in leaf area with seasonality and drought we conducted monthly ground-based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structured LAI along axes of both canopy height and light environments. Upper canopy LAI increased during the dry season, whereas lower canopy LAI decreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understory LAI increased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015-2016 severe El Niño drought. Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.


Assuntos
Secas , Florestas , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Brasil , El Niño Oscilação Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA