Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026803

RESUMO

The eastern population of the North American monarch butterfly (Danaus plexippus) overwinters from November through March in the high-altitude (3000 m+) forests of central Mexico during which time they rely largely on stored lipids. These are acquired during larval development and the conversion of sugars from floral nectar by adults. We sampled fall migrant monarchs from southern Canada through the migratory route to two overwintering sites in 2019 (n = 10 locations), 2020 (n = 8 locations) and 2021 (n = 7 locations). Moderate to extreme droughts along the migratory route were expected to result in low lipid levels in overwintering monarchs but our analysis of lipid levels of monarchs collected at overwintering sites indicated that in all years most had high levels of lipids prior to winter. Clearly, a significant proportion of lipids were consistently acquired in Mexico during the last portion of the migration. Drought conditions in Oklahoma, Texas and northern Mexico in 2019 resulted in the lowest levels of lipid mass and wing loading observed in that year but with higher levels at locations southward in Mexico to the overwintering sites. Compared with 2019, lipid levels increased during the 2020 and 2021 fall migrations but were again higher during the Mexican portion of the migration than for Oklahoma and Texas samples, emphasizing a recovery of lipids as monarchs advanced toward the overwintering locations. In all 3 years, body water was highest during the Canada-USA phase of migration but then declined during the nectar foraging phase in Mexico before recovering again at the overwintering sites. The increase in mass and lipids from those in Texas to the overwintering sites in Mexico indicates that nectar availability in Mexico can compensate for poor conditions experienced further north. Our work emphasizes the need to maintain the floral and therefore nectar resources that fuel both the migration and storage of lipids throughout the entire migratory route.

2.
PLoS One ; 12(7): e0181245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708851

RESUMO

To assess the change in the size of the eastern North American monarch butterfly summer population, studies have used long-term data sets of counts of adult butterflies or eggs per milkweed stem. Despite the observed decline in the monarch population as measured at overwintering sites in Mexico, these studies found no decline in summer counts in the Midwest, the core of the summer breeding range, leading to a suggestion that the cause of the monarch population decline is not the loss of Midwest agricultural milkweeds but increased mortality during the fall migration. Using these counts to estimate population size, however, does not account for the shift of monarch activity from agricultural fields to non-agricultural sites over the past 20 years, as a result of the loss of agricultural milkweeds due to the near-ubiquitous use of glyphosate herbicides. We present the counter-hypotheses that the proportion of the monarch population present in non-agricultural habitats, where counts are made, has increased and that counts reflect both population size and the proportion of the population observed. We use data on the historical change in the proportion of milkweeds, and thus monarch activity, in agricultural fields and non-agricultural habitats to show why using counts can produce misleading conclusions about population size. We then separate out the shifting proportion effect from the counts to estimate the population size and show that these corrected summer monarch counts show a decline over time and are correlated with the size of the overwintering population. In addition, we present evidence against the hypothesis of increased mortality during migration. The milkweed limitation hypothesis for monarch decline remains supported and conservation efforts focusing on adding milkweeds to the landscape in the summer breeding region have a sound scientific basis.


Assuntos
Borboletas/fisiologia , Agricultura , Migração Animal , Animais , Asclepias/efeitos dos fármacos , Asclepias/crescimento & desenvolvimento , Asclepias/parasitologia , Borboletas/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Ecossistema , Herbicidas/toxicidade , México , Caules de Planta/parasitologia , Densidade Demográfica , Estações do Ano
3.
PeerJ ; 5: e3221, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28462031

RESUMO

Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9-60.9 million ha-1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha-1 (95% CI [2.4-80.7] million ha-1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha-1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

4.
Physiol Biochem Zool ; 78(2): 153-62, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15778935

RESUMO

Neotropical African honeybees (Apis mellifera scutellata), in the process of spreading throughout tropical and subtropical regions of the Americas, hybridize with and mostly replace European honeybees (primarily Apis mellifera mellifera and Apis mellifera ligustica). To help understand this process, we studied the effect of lineage (African, European, or hybrid) on the flight physiology of honeybee reproductives. Flight metabolic rates were higher in queens and drones of African lineage than in European or hybrid bees, as has been previously found for foraging workers. These differences were associated with higher thorax/body mass ratios and higher thorax-specific metabolic rates in African lineage bees. Queens were reared in common colonies, so these metabolic and morphological differences are likely to be genetic in origin. African drones had higher wing beat frequencies and thorax temperatures than European or hybrid bees. Hybrids were intermediate for many parameters, but hybrid queen mass-specific flight metabolic rates were low relative to Africans and were nonlinearly affected by the proportion of African lineage, consistent with some negative heterosis for this trait.


Assuntos
Abelhas/fisiologia , Metabolismo Energético/fisiologia , Voo Animal/fisiologia , Hibridização Genética/fisiologia , Análise de Variância , Animais , Temperatura Corporal , Peso Corporal , Dióxido de Carbono/metabolismo , Hierarquia Social , Isoenzimas , México , Dinâmica Populacional , Especificidade da Espécie , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA