Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650539

RESUMO

Phytohormones are natural chemical messengers that play critical roles in the regulation of plant growth and development as well as responses to biotic and abiotic stress factors, maintaining plant homeostasis, and allowing adaptation to environmental changes. The discovery of a new class of phytohormones, the brassinosteroids (BRs), almost 40 years ago opened a new era for the studies of plant growth and development and introduced new perspectives in the regulation of agronomic traits through their use in agriculture. BRs are a group of hormones with significant growth regulatory activity that act independently and in conjunction with other phytohormones to control different BR-regulated activities. Genetic and molecular research has increased our understanding of how BRs and their cross-talk with other phytohormones control several physiological and developmental processes. The present article provides an overview of BRs' discovery as well as recent findings on their interactions with other phytohormones at the transcriptional and post-transcriptional levels, in addition to clarifying how their network works to modulate plant growth, development, and responses to biotic and abiotic stresses.


Assuntos
Adaptação Fisiológica , Brassinosteroides/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Brassinosteroides/química , Reguladores de Crescimento de Plantas/química , Transdução de Sinais
2.
Plant Cell Rep ; 29(8): 857-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20480367

RESUMO

Transcription mediated by RNA polymerase II depends on a set of different transcription factors to form the pre-initiation complex. TFIIA is involved in the construction of this complex and increases the affinity of TBP for the DNA union region in vitro. In this study, we characterized the ScTFIIAgamma gene, which encodes a homolog of the smaller subunit (gamma) of transcription factor TFIIA in sugarcane. RNA blot analysis showed that ScTFIIAgamma transcripts accumulate in all tissues evaluated, with higher levels in leaf roll and flowers. In situ hybridization showed that ScTFIIAgamma was expressed in different cells of the reproductive meristem. In sugarcane plantlets, methyl jasmonate and absicic acid treatments as well as phosphate starvation had no influence on ScTFIIAgamma transcript accumulation. The subcelullar localization assay demonstrates that ScTFIIAgamma protein is directed to the cell nucleus. The phylogenetic analysis, the expression in several tissues and under different treatments and the nuclear localization are in line with the putative role of ScTFIIAgamma as a subunit of basal transcription factor.


Assuntos
Proteínas de Plantas/metabolismo , Saccharum/genética , Fator de Transcrição TFIIA/metabolismo , Sequência de Aminoácidos , Núcleo Celular/genética , Clonagem Molecular , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética , Saccharum/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Fator de Transcrição TFIIA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA