Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 15(4): 102333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522220

RESUMO

Rhipicephalus (Boophilus) microplus, also known as the cattle tick, causes severe parasitism and transmits different pathogens to vertebrate hosts, leading to massive economic losses. In the present study, we performed a functional characterization of a ribosomal protein from R. microplus to investigate its importance in blood feeding, egg production and viability. Ribosomal protein S18 (RPS18) is part of the 40S subunit, associated with 18S rRNA, and has been previously pointed to have a secondary role in different organisms. Rhipicephalus microplus RPS18 (RmRPS18) gene expression levels were modulated in female salivary glands during blood feeding. Moreover, mRNA levels in this tissue were 10 times higher than those in the midgut of fully engorged female ticks. Additionally, recombinant RmRPS18 was recognized by IgG antibodies from sera of cattle naturally or experimentally infested with ticks. RNAi-mediated knockdown of the RmRPS18 gene was performed in fully engorged females, leading to a significant (29 %) decrease in egg production. Additionally, egg hatching was completely impaired, suggesting that no viable eggs were produced by the RmRPS18-silenced group. Furthermore, antimicrobial assays revealed inhibitory activities against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria, affecting bacterial growth. Data presented here show the important role of RmRPS18 in tick physiology and suggest that RmRPS18 can be a potential target for the development of novel strategies for tick control.


Assuntos
Proteínas de Artrópodes , Rhipicephalus , Proteínas Ribossômicas , Animais , Rhipicephalus/genética , Rhipicephalus/fisiologia , Proteínas Ribossômicas/genética , Feminino , Bovinos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Doenças dos Bovinos/parasitologia , Glândulas Salivares
2.
PLoS One ; 19(2): e0295806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319909

RESUMO

In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9-17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and ßPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Masculino , Feminino , Bothrops jararaca , Proteômica/métodos , Inibidores de Fosfolipase A2 , Bothrops/metabolismo , Fosfolipases A2/metabolismo , Venenos de Crotalídeos/química
3.
Exp Parasitol ; 254: 108616, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696328

RESUMO

Sphingomyelinase D is a toxin present in venomous spiders and bacteria and is associated with infection symptoms in patients affected by spider bites. It was observed that in Ixodes scapularis ticks, sphingomyelinase-like protein secreted in saliva can modulate the host immune response, affecting the transmission of flavivirus to the host via exosomes. In this work, a sphingomyelinase D-like protein (RmSMase) from R. microplus, a tick responsible for economic losses and a vector of pathogens for cattle, was investigated. The amino acid sequence revealed the lack of important residues for enzymatic activity, but the recombinant protein showed sphingomyelinase D activity. RmSMase shows Ca2+ and Mg2+ dependence in acidic pH, differing from IsSMase, which has Mg2+ dependence in neutral pH. Due to the difference between RmSMase and other SMases described, the data suggest that RmSMase belongs to SMase D class IIc. RmSMase mRNA transcription levels are upregulated during tick feeding, and the recombinant protein was recognized by host antibodies elicited after heavy tick infestation, indicating that RmSMase is present in tick saliva and may play a role in the tick feeding process.

4.
Biochimie ; 214(Pt B): 96-101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37364769

RESUMO

Arboviruses are a global concern for a multitude of reasons, including their increased incidence and human mortality. Vectors associated with arboviruses include the mosquito Aedes sp., which is responsible for transmitting the Zika virus. Flaviviruses, like the Zika virus, present only one chymotrypsin-like serine protease (NS3) in their genome. Together with host enzymes, the NS2B co-factor NS3 protease complex are essential for the viral replication cycle by virus polyprotein processing. To search for Zika virus NS2B-NS3 protease (ZIKVPro) inhibitors, a phage display library was constructed using the Boophilin domain 1 (BoophD1), a thrombin inhibitor from the Kunitz family. A BoophilinD1 library mutated at positions P1-P4' was constructed, presenting a titer of 2.9x106 (cfu), and screened utilizing purified ZIKVPro. The results demonstrated at the P1-P4' positions the occurrence of 47% RALHA sequence (mut 12) and 11.8% RASWA sequence (mut14), SMRPT, or KALIP (wt) sequence. BoophD1-wt and mutants 12 and 14 were expressed and purified. The purified BoophD1 wt, mut 12 and 14, presented Ki values for ZIKVPro of 0.103, 0.116, and 0.101 µM, respectively. The BoophD1 mutant inhibitors inhibit the Dengue virus 2 protease (DENV2) with Ki values of 0.298, 0.271, and 0.379 µM, respectively. In conclusion, BoophD1 mut 12 and 14 selected for ZIKVPro demonstrated inhibitory activity like BoophD1-wt, suggesting that these are the strongest Zika inhibitors present in the BoophD1 mutated phage display library. Furthermore, BoophD1 mutants selected for ZIKVPro inhibit both Zika and Dengue 2 proteases making them potential pan-flavivirus inhibitors.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/genética , Mosquitos Vetores , Serina Endopeptidases/genética , Inibidores Enzimáticos , Antivirais/farmacologia , Peptídeo Hidrolases
5.
Vet Parasitol ; 318: 109932, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060790

RESUMO

Rhipicephalus (Boophilus) microplus, the Cattle Fever Tick, causes significant economic losses in livestock in tropical and subtropical regions of the world. As the usual control strategy based on chemical acaricides presents different drawbacks, alternative control strategies have been considered for tick control. In recent decades, several tick proteins have been evaluated as targets for the development of anti-tick vaccines. Thus, in the present work, coding sequences from three different proteins present in tick saliva were employed together to construct a recombinant chimeric protein that was evaluated as an antigen in rabbit immunization. Then, the elicited antibodies were tested in a tick artificial feeding experiment to verify the protective effect against the parasites. In addition to Rhipicephalus microplus subtilisin inhibitor 7 (RmSI-7), a serine protease inhibitor member of the TIL (Trypsin Inhibitory Like) family, an interdomain region from the Kunitz inhibitor BmTI-A, and a new cysteine-rich AMP-like microplusin, called RmSEI (previously identified as an elastase inhibitor), were selected to compose the chimeric protein. Anti-chimeric IgG antibodies were able to affect R. microplus female egg production after artificial feeding. Moreover, antibodies elicited in infested tick-resistant and tick-susceptible cattle recognized the recombinant chimera. Additionally, the functional characterization of recombinant RmSEI was performed and revealed antimicrobial activity against gram-positive bacteria. Moreover, the antimicrobial protein was also recognized by antibodies elicited in sera from cattle previously exposed to R. microplus bites. Together, these data suggest that the chimeric protein composed of three salivary antigens is suitable for anti-tick vaccine development.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Coelhos , Feminino , Animais , Bovinos , Rhipicephalus/genética , Antígenos , Proteínas Recombinantes , Proteínas de Artrópodes/metabolismo , Proteínas Recombinantes de Fusão , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , Doenças dos Bovinos/parasitologia
6.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500726

RESUMO

This study investigates the efficacy of miltefosine, alkylphospholipid, and alkyltriazolederivative compounds against leukemia lineages. The cytotoxic effects and cellular and molecular mechanisms of the compounds were investigated. The inhibitory potential and mechanism of inhibition of cathepsins B and L, molecular docking simulation, molecular dynamics and binding free energy evaluation were performed to determine the interaction of cathepsins and compounds. Among the 21 compounds tested, C9 and C21 mainly showed cytotoxic effects in Jurkat and CCRF-CEM cells, two human acute lymphoblastic leukemia (ALL) lineages. Activation of induced cell death by C9 and C21 with apoptotic and necrosis-like characteristics was observed, including an increase in annexin-V+propidium iodide-, annexin-V+propidium iodide+, cleaved caspase 3 and PARP, cytochrome c release, and nuclear alterations. Bax inhibitor, Z-VAD-FMK, pepstatin, and necrostatin partially reduced cell death, suggesting that involvement of the caspase-dependent and -independent mechanisms is related to cell type. Compounds C9 and C21 inhibited cathepsin L by a noncompetitive mechanism, and cathepsin B by a competitive and noncompetitive mechanism, respectively. Complexes cathepsin-C9 and cathepsin-C21 exhibited significant hydrophobic interactions, water bridges, and hydrogen bonds. In conclusion, alkyltriazoles present cytotoxic activity against acute lymphoblastic lineages and represent a promising scaffold for the development of molecules for this application.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Apoptose , Propídio/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Anexina A5/metabolismo , Linhagem Celular Tumoral
7.
Biochem Biophys Res Commun ; 590: 139-144, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974302

RESUMO

In Brazil, the major vector of arboviruses is Aedes aegypti, which can transmit several alpha and flaviviruses. In this work, a pacifastin protease inhibitor library was constructed and used to select mutants for Ae. aegypti larvae digestive enzymes. The library contained a total of 3.25 × 105 cfu with random mutations in the reactive site (P2-P2'). The most successfully selected mutant, TiPI6, a versatile inhibitor, was able to inhibit all three Ae. aegypti larvae proteolytic activities, trypsin-like, chymotrypsin-like and elastase-like activities, with IC50 values of 0.212 nM, 0.107 nM and 0.109 nM, respectively. In conclusion, the TiPI mutated phage display library was shown to be a useful tool for the selection of an inhibitor of proteolytic activities combined in a mix. TiPI6 is capable of controlling all three digestive enzyme activities present in the larval midgut extract. To our knowledge, this is the first time that one inhibitor containing a Gln at the P1 position showed inhibitory activity against trypsin, chymotrypsin, and elastase-like activities. TiPI6 can be a candidate for further larvicidal studies.


Assuntos
Aedes/enzimologia , Inibidores Enzimáticos/farmacologia , Biblioteca de Peptídeos , Proteínas/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Mutação/genética , Inibidores da Tripsina
8.
Biochimie ; 194: 1-12, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34896570

RESUMO

Eczema is a skin condition characterized by itchy and inflammatory patches. The accumulation of neutrophils and the imbalance between enzymes and their inhibitors appears to be related to this condition. We proposed a neutrophil elastase (NE)-based eczema model in mice in order to verify histopathological features as well as the expression and activity of proteases and inhibitors. Mice skins were topically administered with human NE (0-2 pmol/cm2) for 24-168 h. It was observed thickening of epidermis, parakeratosis, spongiosis and leukocyte infiltration. Also, NE-treated skins presented high activity of epidermal kallikreins 5 and 7, and cathepsin B on synthetic substrates, and expression evaluated by RT-qPCR. The proteolytic activity was inhibited by soybean trypsin inhibitor, CA074 and Caesalpinia echinata kallikrein inhibitor (CeKI). The topic application of CeKI reversed eczema phenotype in NE-treated skins. Elafin expression was shown to be increased in NE-treated skins. These results suggest that the NE may trigger morphological and biochemical changes in skin similar to those observed in eczematous diseases. In addition to the establishment of this in vivo model, this work opens perspectives for the use of protease inhibitor-based drugs for the management of this skin condition.


Assuntos
Eczema , Peptídeo Hidrolases , Animais , Catepsina G , Catepsinas/metabolismo , Eczema/tratamento farmacológico , Eczema/metabolismo , Camundongos , Neutrófilos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química
9.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200098, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33747067

RESUMO

BACKGROUND: Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect and the main vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). In the present study, the authors investigated whether a serine protease activity from the saliva of T. infestans has a role in vasomotor modulation, and in the insect-blood feeding by cleaving and activating protease-activated receptors (PARs). METHODS: T. infestans saliva was chromatographed as previously reported for purification of triapsin, a serine protease. The cleavage activity of triapsin on PAR peptides was investigated based on FRET technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide cleaved by triapsin. NO measurements were performed using the DAN assay (2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured in vessels with or without functional endothelium pre-contracted with phenylephrine (3 µM). Intravital microscopy was used to assess the effect of triapsin on mouse skin microcirculation. RESULTS: Triapsin was able to induce hydrolysis of PAR peptides and showed a higher preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry confirmed a single cleavage site, which corresponds to the activation site of the PAR-2 receptor. Triapsin induced dose-dependent NO release in cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum effect at 17.58 nM. Triapsin purified by gel-filtration chromatography (10-16 to 10-9 M) was applied cumulatively to mouse mesenteric artery rings and showed a potent endothelium-dependent vasodilator effect (EC30 = 10-12 M). Nitric oxide seems to be partially responsible for this vasodilator effect because L-NAME (L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase inhibitor, did not abrogate the vasodilation activated by triapsin. Anti-PAR-2 antibody completely inhibited vasodilation observed in the presence of triapsin activity. Triapsin activity also induced an increase in the mouse ear venular diameter. CONCLUSION: Data from this study suggest a plausible association between triapsin activity mediated PAR-2 activation and vasodilation caused by T. infestans saliva.

10.
Phytochemistry ; 182: 112595, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321445

RESUMO

Protease inhibitors have been widely used in several therapeutic applications such as in the treatment of bleeding disorders, hypertension, cancer and pulmonary diseases. In a previous work, we demonstrated that a Kunitz-type serine protease inhibitor isolated from the seeds of Caesalpinia echinata (CeEI) exhibits pharmacological potential in lung inflammatory diseases in which neutrophil elastase plays a crucial role. However, an important challenge in the use of natural products is to ensure a commercially viable production. In this work, we report the cloning, expression and purification of two recombinant CeEI isoinhibitors with 700 base pairs encoding two proteins with 181 amino acid residues (rCeEI-4 and rCeEI-5). After the expression, each yielding 22 mg/L of active protein, both isoinhibitors presented a molecular mass of about 23.0 kDa, evaluated by SDS-PAGE. The inhibition constants for human neutrophil elastase (HNE) were 0.67 nM (rCeEI-4) and 0.57 nM (rCeEI-5), i.e., similar to the native inhibitor (1.90 nM). Furthermore, rCeEI-4 was used as a template to design smaller functional peptides flanking the inhibitor reactive site: rCeEI-36, delimited between the amino acid residues N36 and S88 containing a disulfide bond in the reactive-site loop, and rCeEI-46, delimited between S46 and L75 without the disulfide bond. The yields were 18 mg/L (rCeEI-36) and 12 mg/L (rCeEI-46). Both peptides inhibit HNE in the nanomolar range (Ki 0.30 ± 0.01 and 8.80 ± 0.23, respectively). Considering their size and the inhibitory efficiency, these peptides may be considered in strategies for the development of drugs targeting pulmonary disorders where elastase is involved.


Assuntos
Caesalpinia , Bioengenharia , Brasil , Elastase de Leucócito , Sementes , Inibidores de Serina Proteinase/farmacologia , Madeira
11.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200098, 2021. graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-31983

RESUMO

Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect and the main vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). In the present study, the authors investigated whether a serine protease activity from the saliva of T. infestans has a role in vasomotor modulation, and in the insect-blood feeding by cleaving and activating protease-activated receptors (PARs). Methods T. infestans saliva was chromatographed as previously reported for purification of triapsin, a serine protease. The cleavage activity of triapsin on PAR peptides was investigated based on FRET technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide cleaved by triapsin. NO measurements were performed using the DAN assay (2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured in vessels with or without functional endothelium pre-contracted with phenylephrine (3 µM). Intravital microscopy was used to assess the effect of triapsin on mouse skin microcirculation. Results Triapsin was able to induce hydrolysis of PAR peptides and showed a higher preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry confirmed a single cleavage site, which corresponds to the activation site of the PAR-2 receptor. Triapsin induced dose-dependent NO release in cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum effect at 17.58 nM. Triapsin purified by gel-filtration chromatography (10-16 to 10-9 M) was applied cumulatively to mouse mesenteric artery rings and showed a potent endothelium-dependent vasodilator effect (EC30 = 10-12 M). Nitric oxide seems to be partially responsible for this vasodilator effect because L-NAME (L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase inhibitor, did not abrogate the vasodilation activated by triapsin. Anti-PAR-2 antibody completely inhibited vasodilation observed in the presence of triapsin activity. Triapsin activity also induced an increase in the mouse ear venular diameter. Conclusion Data from this study suggest a plausible association between triapsin activity mediated PAR-2 activation and vasodilation caused by T. infestans saliva.(AU)


Assuntos
Animais , Peptídeos , Triatoma , Trypanosoma cruzi , Vasodilatação , Cromatografia , Receptor PAR-2 , Óxido Nítrico
12.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;27: e20200098, 2021. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154770

RESUMO

Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect and the main vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). In the present study, the authors investigated whether a serine protease activity from the saliva of T. infestans has a role in vasomotor modulation, and in the insect-blood feeding by cleaving and activating protease-activated receptors (PARs). Methods T. infestans saliva was chromatographed as previously reported for purification of triapsin, a serine protease. The cleavage activity of triapsin on PAR peptides was investigated based on FRET technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide cleaved by triapsin. NO measurements were performed using the DAN assay (2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured in vessels with or without functional endothelium pre-contracted with phenylephrine (3 µM). Intravital microscopy was used to assess the effect of triapsin on mouse skin microcirculation. Results Triapsin was able to induce hydrolysis of PAR peptides and showed a higher preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry confirmed a single cleavage site, which corresponds to the activation site of the PAR-2 receptor. Triapsin induced dose-dependent NO release in cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum effect at 17.58 nM. Triapsin purified by gel-filtration chromatography (10-16 to 10-9 M) was applied cumulatively to mouse mesenteric artery rings and showed a potent endothelium-dependent vasodilator effect (EC30 = 10-12 M). Nitric oxide seems to be partially responsible for this vasodilator effect because L-NAME (L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase inhibitor, did not abrogate the vasodilation activated by triapsin. Anti-PAR-2 antibody completely inhibited vasodilation observed in the presence of triapsin activity. Triapsin activity also induced an increase in the mouse ear venular diameter. Conclusion Data from this study suggest a plausible association between triapsin activity mediated PAR-2 activation and vasodilation caused by T. infestans saliva.(AU)


Assuntos
Animais , Peptídeos , Triatoma , Trypanosoma cruzi , Vasodilatação , Cromatografia , Receptor PAR-2 , Óxido Nítrico
13.
Sci Rep ; 10(1): 18296, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106528

RESUMO

To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Rhipicephalus/fisiologia , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos , Ovário/química , Gravidez , Rhipicephalus/genética , Saliva/química , Análise de Sequência de RNA
14.
Biochimie ; 179: 127-134, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32946988

RESUMO

C1A cysteine peptidases have been shown to play an important role during apicomplexan invasion and egress of host red blood cells (RBCs) and therefore have been exploited as targets for drug development, in which peptidase specificity is deterministic. Babesia bovis genome is currently available and from the 17 putative cysteine peptidases annotated four belong to the C1A subfamily. In this study, we describe the biochemical characterization of a C1A cysteine peptidase, named here BbCp (B. bovis cysteine peptidase) and evaluate its possible participation in the parasite asexual cycle in host RBCs. The recombinant protein was obtained in bacterial inclusion bodies and after a refolding process, presented typical kinetic features of the cysteine peptidase family, enhanced activity in the presence of a reducing agent, optimum pH between 6.5 and 7.0 and was inhibited by cystatins from R. microplus. Moreover, rBbCp substrate specificity evaluation using a peptide phage display library showed a preference for Val > Leu > Phe. Finally, antibodies anti-rBbCp were able to interfere with B. bovis growth in vitro, which highlights the BbCp as a potential target for drug design.


Assuntos
Babesia bovis/enzimologia , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Animais , Anticorpos/farmacologia , Babesia bovis/efeitos dos fármacos , Babesia bovis/genética , Babesia bovis/crescimento & desenvolvimento , Cistatinas/metabolismo , Cisteína Proteases/imunologia , Desenho de Fármacos , Cinética , Camundongos Endogâmicos BALB C , Biblioteca de Peptídeos , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
15.
Ticks Tick Borne Dis ; 11(3): 101374, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32008997

RESUMO

Rhipicephalus microplus is a cattle ectoparasite found in tropical and subtropical regions around the world with great impact on livestock production. R. microplus can also harbor pathogens, such as Babesia sp. and Anaplasma sp. which further compromise cattle production. Blood meal acquisition and digestion are key steps for tick development. In ticks, digestion takes place inside midgut cells and is mediated by aspartic and cysteine peptidases and, therefore, regulated by their inhibitors. Cystatins are a family of cysteine peptidases inhibitors found in several organisms and have been associated in ticks with blood acquisition, blood digestion, modulation of host immune response and tick immunity. In this work, we characterized a novel R. microplus type 1 cystatin, named Rmcystatin-1b. The inhibitor transcripts were found to be highly expressed in the midgut of partially and fully engorged females and they appear to be modulated at different days post-detachment. Purified recombinant Rmcystatin-1b displayed inhibitory activity towards typical cysteine peptidases with high affinity. Moreover, rRmcystatin-1b was able to inhibit native R. microplus cysteine peptidases and RNAi-mediated knockdown of the cystatin transcripts resulted in increased proteolytic activity. Moreover, rRmcystatin-1b was able to interfere with B. bovis growth in vitro. Taken together our data strongly suggest that Rmcystatin-1b is a regulator of blood digestion in R. microplus midgut.


Assuntos
Proteínas de Artrópodes/genética , Cisteína Proteases/genética , Regulação da Expressão Gênica , Rhipicephalus/genética , Cistatinas Salivares/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Cisteína Proteases/metabolismo , Feminino , Filogenia , Rhipicephalus/metabolismo , Cistatinas Salivares/química , Cistatinas Salivares/metabolismo , Alinhamento de Sequência
16.
Int J Biol Macromol ; 146: 141-149, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857170

RESUMO

Recently, a salivary gland transcriptome study demonstrated that the transcripts of a putative cystatin gene (SeqID AAEL013287; Aacystatins) from Aedes aegypti were increased in DENV2-infected mosquitoes and that silencing of the Aacystatin gene resulted in an increase in DENV titres. In this work, Aacystatin was biochemically characterized; the purified recombinant inhibitor was able to inhibit typical cysteine proteases with a Ki in the nM range. Pulldown assays using Aag2 cell extracts identified a cathepsin L-like peptidase (AaCatL) as a possible target of Aacystatin. Purified recombinant AaCatL had an optimal pH of 5.0 and displayed a preference for Leu, Val and Phe residues at P2, which is common for other cathepsin L-like peptidases. Transcription analysis of Aacystatin and AaCatL in the salivary glands and midgut of DENV2-infected mosquitoes revealed a negative correlation between DENV2 titres and levels of the inhibitor and peptidase, suggesting their involvement in DENV2-mosquito interactions. Considering that apoptosis may play an important role during viral infections, the possible involvement of Aacystatin in staurosporine-induced apoptosis in Aag2 cells was investigated; the results showed higher expression of the inhibitor in treated cells; moreover, pre incubation with rAacystatin was able to increase Aag2 cell viability.


Assuntos
Aedes , Catepsina L , Cistatinas , Vírus da Dengue/metabolismo , Proteínas de Insetos , Aedes/enzimologia , Aedes/genética , Aedes/virologia , Animais , Catepsina L/química , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular , Cistatinas/química , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
17.
Biochimie ; 163: 12-20, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31059753

RESUMO

In parasites, cathepsins are implicated in mechanisms related to organism surveillance and host evasion. Some parasite cathepsins have fibrinogenolytic and fibrinolytic activity, suggesting that they may contribute to maintain blood meal fluidity for extended feeding periods. Here, it is shown that BmGTI (Rhipicephalus [Boophilus] microplus Gut Thrombin Inhibitor), a protein previously described as an inhibitor of fibrinogen hydrolysis and platelet aggregation by thrombin, and BmCL1 (Rhipicephalus [Boophilus] microplus Cathepsin-L like 1) are the same protein, hereinafter referred to using the earliest name (BmCL1). To further characterize BmCL1, Rhipicephalus microplus native and recombinant (rBmCL1) proteins were obtained. Native BmCL1 was isolated using thrombin-affinity chromatography, and it displays thrombin inhibition activity. We subsequently investigated rBmCL1 interaction with thrombin. We show that rBmCL1 and thrombin have a dissociation constant (ΚD) of 130.2 ±â€¯11.2 nM, and this interaction likely occurs due to a more electronegative surface of BmCL1 at pH 7.5 than at pH 5.0, which may favor an electrostatic binding to positively charged thrombin exosites. During BmCL1-thrombin interaction, thrombin is not degraded or inhibited. rBmCL1 impairs thrombin-induced fibrinogen clotting via a fibrinogenolytic activity. Fibrinogen degradation by BmCL1 occurs by the hydrolysis of Aα- and Bß-chains, generating products similar to those produced by fibrinogenolytic cathepsins from other organisms. In conclusion, BmCL1 likely has an additional role in R. microplus blood digestion, besides its role in hemoglobin degradation at acid pH. BmCL1 fibrinogenolytic activity indicates a proteolytic activity in the neutral lumen of tick midgut, contributing to maintain the fluidity of the ingested blood, which remains to be confirmed in vivo.


Assuntos
Catepsina L/metabolismo , Rhipicephalus/enzimologia , Trombina/metabolismo , Sequência de Aminoácidos , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Anticoagulantes/metabolismo , Catepsina L/química , Catepsina L/isolamento & purificação , Bovinos , Cinética , Modelos Moleculares , Proteólise
18.
Environ Sci Pollut Res Int ; 25(31): 31718-31726, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30209768

RESUMO

The control of mosquitoes by means of chemical insecticides has been a problem, mainly due to the possibility of resistance developed by insects to xenobiotics. For this reason, demand for botanical insecticides has increased. In this sense, the present work aims to verify the susceptibility and morphological and biochemical alterations of Culex quinquefasciatus larvae after exposure to essential oil (EO) of leaves of Baccharis dracunculifolia. To observe the larvicidal action, larvae were exposed to EO at concentrations of 25, 50, 100, and 200 mg/L, until their emergence to adults. The control group was exposed to deionized water and dimethyl sulfoxide. Morphological analyses were also carried out using hematoxylin and eosin, mercury bromophenol blue, Nile blue, and periodic acid Schiff. Biochemical analyses of total glucose, triacylglyceride (TAG), protein, and acetylcholinesterase levels were performed. The phytochemical analysis of the EO showed (E)-nerolidol as the major compound (30.62%). Larvae susceptibility results showed a LC50 of 34.45 mg/L for EO. Morphological analysis showed that there were histological changes in midgut. For biochemical analyses, the glucose level in the larvae exposed to EO for 24 h decreased significantly, unlike the TAG levels, which increased. The total protein level of the larvae also increased after exposure for 24 h, and acetylcholinesterase levels decreased significantly. Taking all our data into account, we can conclude that EO causes destabilization in larva, leading to histological changes, metabolic deregulation and, consequently, their death.


Assuntos
Baccharis/fisiologia , Culex/fisiologia , Inseticidas/toxicidade , Óleos Voláteis/toxicidade , Extratos Vegetais/toxicidade , Animais , Culicidae , Inseticidas/análise , Larva , Óleos Voláteis/química , Extratos Vegetais/análise , Folhas de Planta/química , Sesquiterpenos
19.
Int J Biol Macromol ; 111: 1214-1221, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29339284

RESUMO

Protease/anti-protease imbalance is the main pathogenic mechanism of emphysema and protease inhibitors have been recognized as potential molecules to treat the disease conditions. In this work the rBmTI-6 first domain (rBmTI-6-D1), a recombinant Kunitz-type serine proteinase inhibitor, was used to verify its effect in prevention or minimization of PPE-induced emphysema in mice. C57BL/6 mice were submitted to a PPE-induced emphysema model and treated with rBmTI-6-D1 before the emphysema development. We showed that the rBmTI-6-D1 treatment was sufficient to avoid the loss of elastic recoil, an effective decrease in alveolar enlargement and in the number of macrophages and lymphocytes in bronchoalveolar lavage fluid. Proteolytic analysis showed a significant increase in elastase activity in PPE-VE (induced emphysema) group that is controlled by rBmTI-6-D1. Kallikrein activity was decreased in the PPE-rBmTI6 (induced emphysema and inhibitor treated) group when compared to PPE-VE group. Although rBmTI-6-D1, did not present a neutrophil elastase (NE) inhibitory activity, the results show that the inhibitor interfered in the pathway of NE secretion in PPE-emphysema mice model. The role of rBmTI-6-D1 in the prevention of emphysema development in the mice model, apparently, is related with a control of inflammatory response due the trypsin/kallikrein inhibitory activity of rBmTI-6-D1.


Assuntos
Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Enfisema Pulmonar/tratamento farmacológico , Inibidores de Serina Proteinase/química , Animais , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Pulmão/fisiopatologia , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Polímeros/toxicidade , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/fisiopatologia , Rhipicephalus/química , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/genética
20.
Biochimie ; 144: 160-168, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29133118

RESUMO

During feeding with blood meal, female Aedes aegypti can transmit infectious agents, such as dengue, yellow fever, chikungunya and Zika viruses. Dengue virus causes human mortality in tropical regions of the world, and there is no specific treatment or vaccine with maximum efficiency being used for these infections. In the vector-virus interaction, the production of several molecules is modulated by both mosquitoes and invading agents. However, little information is available about these molecules in the Ae. aegypti mosquito during dengue infection. Inhibitors of the pacifastin family have been described to participate in the immune response of insects and Pac2 is the only gene of this family present in Ae. aegypti being then chosen for investigation. Pac2 was expressed in E. coli, purified and analyzed by mass spectrometry and SDS-PAGE. The Pac2 transcript was detected by qPCR, and its protein levels were assessed by Western blotting. The inhibitory activity of Pac2 was measured using its Ki, IC50 and zymography. Mosquito infections with DENV were introduced with the Brazilian ACS-46 DENV-2 strain propagated in C6/36 cells. In the present work, we showed that it is possibly involved in the interaction of the mosquitoes with the dengue virus. The Pac2 transcript was detected in larvae and in both the salivary gland and midgut of Ae. aegypti females, while the native protein was identified in females 3 h post-blood meal. Pac2 is a strong inhibitor of trypsin-like and thrombin-like proteases, which are present in 4th instar larvae midgut and females 24 h after blood meal. During DENV infection, up regulation of Pac2 expression occurs in the salivary gland and midgut. Pac2 is the first Pacifastin inhibitor member described in mosquitoes. Our results suggest that Pac2 acts on mosquito serine proteases, mainly the trypsin-like type, and is under transcriptional control by virus infection signals to allow its survival in the vector or by the mosquito as a defense mechanism against virus infection.


Assuntos
Aedes/metabolismo , Aedes/virologia , Vírus da Dengue/fisiologia , Inibidores de Serina Proteinase/metabolismo , Aedes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Cinética , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA