Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 24(1): 15-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906494

RESUMO

PURPOSE: Multiomics cancer subtyping is becoming increasingly popular for directing state-of-the-art therapeutics. However, these methods have never been systematically assessed for their ability to capture cancer prognosis for identified subtypes, which is essential to effectively treat patients. METHODS: We systematically searched PubMed, The Cancer Genome Atlas, and Pan-Cancer Atlas for multiomics cancer subtyping studies from 2010 through 2019. Studies comprising at least 50 patients and examining survival were included. Pooled Cox and logistic mixed-effects models were used to compare the ability of multiomics subtyping methods to identify clinically prognostic subtypes, and a structural equation model was used to examine causal paths underlying subtyping method and mortality. RESULTS: A total of 31 studies comprising 10,848 unique patients across 32 cancers were analyzed. Latent-variable subtyping was significantly associated with overall survival (adjusted hazard ratio, 2.81; 95% CI, 1.16-6.83; P = .023) and vital status (1 year adjusted odds ratio, 4.71; 95% CI, 1.34-16.49; P = .015; 5 year adjusted odds ratio, 7.69; 95% CI, 1.83-32.29; P = .005); latent-variable-identified subtypes had greater associations with mortality across models (adjusted hazard ratio, 1.19; 95% CI, 1.01-1.42; P = .050). Our structural equation model confirmed the path from subtyping method through multiomics subtype (߈ = 0.66; P = .048) on survival (߈ = 0.37; P = .008). CONCLUSION: Multiomics methods have different abilities to define clinically prognostic cancer subtypes, which should be considered before administration of personalized therapy; preliminary evidence suggests that latent-variable methods better identify clinically prognostic biomarkers and subtypes.


Assuntos
Biomarcadores Tumorais , Neoplasias , Biomarcadores Tumorais/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Prognóstico , Modelos de Riscos Proporcionais
2.
Comput Math Methods Med ; 2015: 794141, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504490

RESUMO

In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain.


Assuntos
Modelos Biológicos , Osteoartrite do Joelho/fisiopatologia , Dor/etiologia , Idoso , Estudos de Casos e Controles , Simulação por Computador , Bases de Dados Factuais , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiopatologia , Modelos Lineares , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Osteoartrite do Joelho/diagnóstico por imagem , Dor/diagnóstico por imagem , Dor/fisiopatologia , Medição da Dor/estatística & dados numéricos , Intensificação de Imagem Radiográfica
3.
Biomed Res Int ; 2015: 961314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106620

RESUMO

The early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is very important for treatment research and patient care purposes. Few biomarkers are currently considered in clinical settings, and their use is still optional. The objective of this work was to determine whether multimodal and nonpreviously AD associated features could improve the classification accuracy between AD, MCI, and healthy controls, which may impact future AD biomarkers. For this, Alzheimer's Disease Neuroimaging Initiative database was mined for case-control candidates. At least 652 baseline features extracted from MRI and PET analyses, biological samples, and clinical data up to February 2014 were used. A feature selection methodology that includes a genetic algorithm search coupled to a logistic regression classifier and forward and backward selection strategies was used to explore combinations of features. This generated diagnostic models with sizes ranging from 3 to 8, including well documented AD biomarkers, as well as unexplored image, biochemical, and clinical features. Accuracies of 0.85, 0.79, and 0.80 were achieved for HC-AD, HC-MCI, and MCI-AD classifications, respectively, when evaluated using a blind test set. In conclusion, a set of features provided additional and independent information to well-established AD biomarkers, aiding in the classification of MCI and AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Diagnóstico Precoce , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Bases de Dados Factuais , Humanos , Imageamento por Ressonância Magnética , Imagem Multimodal , Radiografia
4.
J Mass Spectrom ; 50(1): 165-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25601689

RESUMO

One of the initial and critical procedures for the analysis of metabolomics data using liquid chromatography and mass spectrometry is feature detection. Feature detection is the process to detect boundaries of the mass surface from raw data. It consists of detected abundances arranged in a two-dimensional (2D) matrix of mass/charge and elution time. MZmine 2 is one of the leading software environments that provide a full analysis pipeline for these data. However, the feature detection algorithms provided in MZmine 2 are based mainly on the analysis of one-dimension at a time. We propose GridMass, an efficient algorithm for 2D feature detection. The algorithm is based on landing probes across the chromatographic space that are moved to find local maxima providing accurate boundary estimations. We tested GridMass on a controlled marker experiment, on plasma samples, on plant fruits, and in a proteome sample. Compared with other algorithms, GridMass is faster and may achieve comparable or better sensitivity and specificity. As a proof of concept, GridMass has been implemented in Java under the MZmine 2 environment and is available at http://www.bioinformatica.mty.itesm.mx/GridMass and MASSyPup. It has also been submitted to the MZmine 2 developing community.


Assuntos
Algoritmos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Sangue/metabolismo , Análise Química do Sangue/métodos , Capsicum/química , Capsicum/metabolismo , Reações Falso-Positivas , Feminino , Frutas/química , Humanos , Proteoma , Processamento de Sinais Assistido por Computador , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA