Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phytopathology ; 114(8): 1802-1809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748545

RESUMO

Citrus canker disease, caused by Xanthomonas citri subsp. citri, poses a significant threat to global citrus production. The control of the disease in the field relies mainly on the use of conventional tools such as copper compounds, which are harmful to the environment and could lead to bacterial resistance. This scenario stresses the need for new and sustainable technologies to control phytopathogens, representing a key challenge in developing studies that translate basic into applied knowledge. During infection, X. citri subsp. citri secretes a transcriptional activator-like effector that enters the nucleus of plant cells, activating the expression of the canker susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1). In this study, we explored the use of antisense oligonucleotides (ASOs) with phosphorothioate modifications to transiently inhibit the gene expression of CsLOB1 in Citrus sinensis. We designed and validated three potential ASO sequences, which led to a significant reduction in disease symptoms compared with the control. The selected ASO3-CsLOB1 significantly decreased the expression level of CsLOB1 when delivered through two distinct delivery methods, and the reduction of the symptoms ranged from approximately 15 to 83%. Notably, plants treated with ASO3 did not exhibit an increase in symptom development over the evaluation period. This study highlights the efficacy of ASO technology, based on short oligonucleotide chemically modified sequences, as a promising tool for controlling phytopathogens without the need for genetic transformation or plant regeneration. Our results demonstrate the potential of ASOs as a biotechnological tool for the management of citrus canker disease.


Assuntos
Resistência à Doença , Inativação Gênica , Oligonucleotídeos Antissenso , Doenças das Plantas , Xanthomonas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas/fisiologia , Xanthomonas/genética , Resistência à Doença/genética , Oligonucleotídeos Antissenso/genética , Citrus/microbiologia , Citrus sinensis/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Pest Manag Sci ; 80(9): 4333-4343, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38647195

RESUMO

BACKGROUND: Xylella fastidiosa is a multi-host bacterium that can be detected in hundreds of plant species including several crops. Diseases caused by X. fastidiosa are considered a threat to global food production. The primary method for managing diseases caused by X. fastidiosa involves using insecticides to control the vector. Hence, it is necessary to adopt new and sustainable disease management technologies to control not only the insect but also the bacteria and plant health. We demonstrated that N-acetylcysteine (NAC), a low-cost cysteine analogue, is a sustainable molecule that can be used in agriculture to decrease the damage caused by X. fastidiosa and improve plant health. RESULTS: Using 15N-NAC we proved that this analogue was absorbed by the roots and transported to different parts of the plant. Inside the plant, NAC reduced the bacterial population by 60-fold and the number of xylem vessels blocked by bacterial biofilms. This reflected in a recovery of 0.28-fold of the daily sap flow compared to health plants. In addition, NAC-treated citrus variegated chlorosis (CVC) plants decreased the oxidative stress by improving the activity of detoxifying enzymes. Moreover, the use of NAC in field conditions positively contributed to the increase in fruit yield of CVC-diseased plants. CONCLUSION: Our research not only advances the understanding of NAC absorption in plants, but also indicates its dual effect as an antimicrobial and antioxidant molecule. This, in turn, negatively affects bacterial survival while improving plant health by decreasing oxidative stress. Overall, the positive field-based evidence supports the viability of NAC as a sustainable agricultural application. © 2024 Society of Chemical Industry.


Assuntos
Acetilcisteína , Doenças das Plantas , Xylella , Xylella/efeitos dos fármacos , Xylella/fisiologia , Acetilcisteína/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Citrus/microbiologia , Frutas/microbiologia
3.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38244227

RESUMO

Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.


Assuntos
Bacteriófagos , Xanthomonas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Percepção de Quorum/genética , Plasmídeos , Xanthomonas/genética , Xanthomonas/metabolismo , Bacteriófagos/genética
4.
Phytopathology ; 113(7): 1266-1277, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36825333

RESUMO

Transcription activator-like effectors are key virulence factors of Xanthomonas. They are secreted into host plant cells and mimic transcription factors inducing the expression of host susceptibility (S) genes. In citrus, CsLOB1 is a direct target of PthA4, the primary effector associated with citrus canker symptoms. CsLOB1 is a transcription factor, and its expression is required for canker symptoms induced by Xanthomonas citri subsp. citri. Several genes are up-regulated by PthA4; however, only CsLOB1 was described as an S gene induced by PthA4. Here, we investigated whether other up-regulated genes could be direct targets of PthA4 or CsLOB1. Seven up-regulated genes by PthA4 were investigated; however, an expansin-coding gene was more induced than CsLOB1. In Nicotiana benthamiana transient expression experiments, we demonstrate that the expansin-coding gene, referred here to as CsLOB1-INDUCED EXPANSIN 1 (CsLIEXP1), is not a direct target of PthA4, but CsLOB1. Interestingly, CsLIEXP1 was induced by CsLOB1 even without the predicted CsLOB1 binding site, which suggested that CsLOB1 has other unknown binding sites. We also investigated the minimum promoter regulated by CsLOB1, and this region and LOB1 domain were conserved among citrus species and relatives, which suggests that the interaction PthA4-CsLOB1-CsLIEXP1 is conserved in citrus species and relatives. This is the first study that experimentally demonstrated a CsLOB1 downstream target and lays the foundation to identify other new targets. In addition, we demonstrated that the CsLIEXP1 is a putative S gene indirectly induced by PthA4, which may serve as the target for genome editing to generate citrus canker-resistant varieties.


Assuntos
Citrus , Xanthomonas , Citrus/genética , Doenças das Plantas/genética , Regiões Promotoras Genéticas/genética , Edição de Genes , Xanthomonas/genética
5.
Front Plant Sci ; 14: 1331258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259920

RESUMO

Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.

6.
Front Plant Sci ; 13: 836582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401588

RESUMO

Citrus canker is a destructive disease caused by Xanthomonas citri subsp. citri, which affects all commercial sweet orange (Citrus sinensis [L.] Osbeck) cultivars. Salicylic acid (SA) and systemic-acquired resistance (SAR) have been demonstrated to have a crucial role in mediating plant defense responses against this phytopathogen. To induce SAR, SA is converted to methyl salicylate (MeSA) by an SA-dependent methyltransferase (SAMT) and translocated systemically to prime noninfected distal tissues. Here, we generated sweet orange transgenic plants (based on cvs. Hamlin and Valencia) overexpressing the SAMT gene from Citrus (CsSAMT) and evaluated their resistance to citrus canker. We obtained four independent transgenic lines and confirmed their significantly higher MeSA volatilization compared to wild-type controls. Plants overexpressing CsSAMT showed reduced symptoms of citrus canker and bacterial populations in all transgenic lines without compromising plant development. One representative transgenic line (V44SAMT) was used to evaluate resistance response in primary and secondary sites. Without inoculation, V44SAMT modulated CsSAMT, CsNPR1, CsNPR3, and CsWRKY22 expression, indicating that this plant is in a primed defense status. The results demonstrate that MeSA signaling prompts the plant to respond more efficiently to pathogen attacks and induces immune responses in transgenic plants at both primary and secondary infection sites.

7.
Sci Rep ; 12(1): 2794, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181693

RESUMO

Type II toxin-antitoxin (TA) systems are widespread in bacteria and are involved in important cell features, such as cell growth inhibition and antimicrobial tolerance, through the induction of persister cells. Overall, these characteristics are associated with bacterial survival under stress conditions and represent a significant genetic mechanism to be explored for antibacterial molecules. We verified that even though Xylella fastidiosa and Xanthomonas citri subsp. citri share closely related genomes, they have different Type II TA system contents. One important difference is the absence of mqsRA in X. citri. The toxin component of this TA system has been shown to inhibit the growth of X. fastidiosa. Thus, the absence of mqsRA in X. citri led us to explore the possibility of using the MqsR toxin to impair X. citri growth. We purified MqsR and confirmed that the toxin was able to inhibit X. citri. Subsequently, transgenic citrus plants producing MqsR showed a significant reduction in citrus canker and citrus variegated chlorosis symptoms caused, respectively, by X. citri and X. fastidiosa. This study demonstrates that the use of toxins from TA systems is a promising strategy to be explored aiming bacterial control.


Assuntos
Toxinas Bacterianas/genética , Citrus/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Antibacterianos/farmacologia , Toxinas Bacterianas/farmacologia , Biotecnologia , Citrus/genética , Proteínas de Escherichia coli/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Virulência/genética , Xanthomonas/genética , Xanthomonas/patogenicidade , Xylella/genética , Xylella/patogenicidade
8.
Braz J Microbiol ; 53(1): 255-265, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34735708

RESUMO

Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae), the sugarcane borer, spends most of its life cycle inside the galleries it burrows into sugarcane stalk, where two rot-causing fungi Colletotrichum falcatum (Went, 1893) and Fusarium verticillioides (Nirenberg, 1976) are commonly found. Results have shown that microbiota harbored by D. saccharalis inhibits the growth of F. verticillioides and C. falcatum. D. saccharalis larvae were collected from chemical-free field plants, and yeast and bacteria from third and fourth-instar D. saccharalis regurgitate were isolated onto appropriate media. The percentage of F. verticillioides and C. falcatum mycelial growth inhibition was recorded. Out of 32 yeast isolates, 9 exerted 30 to 40% growth inhibition of C. falcatum or F. verticillioides. When 24 bacterial isolates were confronted with rot-causing fungi, six inhibited C. falcatum growth by 30 to 60%, and 24 isolates inhibited 30 to 60% of F. verticillioides growth. Bacteria and yeast isolates were identified through DNA sequencing of part of 16S rDNA and part of ITS1-5.8S-ITS2, respectively, revealing an abundance of isolates with sequence similarity to Klebsiella and Bacillus and Meyerozyma, which have been used as biological control agents and their ability to promote plant growth has been demonstrated. We have shown that microorganisms from borer regurgitate inhibit phytopathogen growth in vitro. Still, further investigation of the possible functions of D. saccharalis-associated microorganisms may help understand their ecological role in plant-insect-phytopathogen interaction.


Assuntos
Mariposas , Saccharum , Animais , Grão Comestível , Larva , Mariposas/fisiologia
9.
Semina ciênc. agrar ; 43(4): 1757-1768, jul.-ago. 2022. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1369892

RESUMO

Plant growth-promoting bacteria (PGPB) are known to establish positive relationships with plants. They act in favoring plant nutrition, production of phytohormones, control of pathogens and enhancement of stress tolerance. Thus, this study aimed to isolate bacteria from soil, rhizosphere, and root endosphere from sugarcane cultivated in the Southeastern of Brazil, to prospect strains with potential for plant growth promotion. The samples were plated in Nutrient Agar medium, and the morphologically distinct colonies were isolated and analyzed about indoleacetic acid production, phosphate solubilization and the growth control of the phytopathogenic fungus Fusarium verticillioides. A total of 219 isolates were obtained, of which 86 from soil, 67 from rhizosphere and 66 from sugarcane root endosphere. The strains that presented more than one mechanism of plant growth promotion were identified by the sequencing of 16S gene. Most species belonged to the genus Bacillus, which has strains already used in various biological products for the control of diseases in agriculture. Some Bacillus species isolated in our study have never been isolated from sugarcane, and others have been studied for the first time as plant growth promoters. The isolated strains constitute an important microbial bank to be explored to compose innovative products for agriculture.(AU)


Bactérias promotoras de crescimento de plantas são conhecidas por estabelecer relações positivas com as plantas. Atuam no favorecimento da nutrição das plantas, produção de fitohormônios, controle de patógenos e aumento da tolerância ao estresse. Desta forma, este estudo teve como objetivo isolar bactérias do solo, rizosfera e endosfera radicular de cana-de-açúcar, cultivada na região Sudeste do Brasil, para prospectar cepas com potencial para promoção de crescimento vegetal. As amostras foram semeadas em meio Ágar Nutriente, e as colônias morfologicamente distintas foram isoladas e analisadas quanto à produção de ácido indolacético, solubilização de fosfato e controle de crescimento do fungo fitopatogênico Fusarium verticillioides. Foram obtidos 219 isolados, sendo 86 do solo, 67 da rizosfera e 66 da endosfera da raiz da cana-de-açúcar. As cepas que apresentaram mais de um mecanismo de promoção do crescimento vegetal foram identificadas pelo sequenciamento do gene 16S. A maioria das espécies pertence ao gênero Bacillus, que possui linhagens utilizadas em diversos produtos biológicos para o controle de doenças na agricultura. Algumas espécies de Bacillus nunca foram isoladas da cana-deaçúcar e outras foram estudadas pela primeira vez como promotoras de crescimento de plantas. As cepas isoladas constituem um importante banco microbiano a ser explorado para a composição de produtos inovadores para a agricultura.(AU)


Assuntos
Reguladores de Crescimento de Plantas , Produtos Biológicos , Saccharum/crescimento & desenvolvimento , Fusarium , Ágar
10.
Front Microbiol ; 12: 712564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616378

RESUMO

Copper-based compounds are widely used in agriculture as a chemical strategy to limit the spread of multiple plant diseases; however, the continuous use of this heavy metal has caused environmental damage as well as the development of copper-resistant strains. Thus, it is important to understand how the bacterial phytopathogens evolve to manage with this metal in the field. The MqsRA Toxin-Antitoxin system has been recently described for its function in biofilm formation and copper tolerance in Xylella fastidiosa, a plant-pathogen bacterium responsible for economic damage in several crops worldwide. Here we identified differentially regulated genes by X. fastidiosa MqsRA by assessing changes in global gene expression with and without copper. Results show that mqsR overexpression led to changes in the pattern of cell aggregation, culminating in a global phenotypic heterogeneity, indicative of persister cell formation. This phenotype was also observed in wild-type cells but only in the presence of copper. This suggests that MqsR regulates genes that alter cell behavior in order to prime them to respond to copper stress, which is supported by RNA-Seq analysis. To increase cellular tolerance, proteolysis and efflux pumps and regulator related to multidrug resistance are induced in the presence of copper, in an MqsR-independent response. In this study we show a network of genes modulated by MqsR that is associated with induction of persistence in X. fastidiosa. Persistence in plant-pathogenic bacteria is an important genetic tolerance mechanism still neglected for management of phytopathogens in agriculture, for which this work expands the current knowledge and opens new perspectives for studies aiming for a more efficient control in the field.

11.
Sci Rep ; 11(1): 15558, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330957

RESUMO

N-Acetylcysteine (NAC) is an antioxidant, anti-adhesive, and antimicrobial compound. Even though there is much information regarding the role of NAC as an antioxidant and anti-adhesive agent, little is known about its antimicrobial activity. In order to assess its mode of action in bacterial cells, we investigated the metabolic responses triggered by NAC at neutral pH. As a model organism, we chose the Gram-negative plant pathogen Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker disease, due to the potential use of NAC as a sustainable molecule against phytopathogens dissemination in citrus cultivated areas. In presence of NAC, cell proliferation was affected after 4 h, but damages to the cell membrane were observed only after 24 h. Targeted metabolite profiling analysis using GC-MS/TOF unravelled that NAC seems to be metabolized by the cells affecting cysteine metabolism. Intriguingly, glutamine, a marker for nitrogen status, was not detected among the cells treated with NAC. The absence of glutamine was followed by a decrease in the levels of the majority of the proteinogenic amino acids, suggesting that the reduced availability of amino acids affect protein synthesis and consequently cell proliferation.


Assuntos
Acetilcisteína/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Xanthomonas/metabolismo , Aminoácidos/metabolismo , Membrana Celular/metabolismo , Citrus/metabolismo , Glutamina/metabolismo
12.
Microorganisms ; 9(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072545

RESUMO

Xanthomonas citri subsp. citri (X. citri) is a plant pathogenic bacterium causing citrus canker disease. The xanA gene encodes a phosphoglucomutase/phosphomannomutase protein that is a key enzyme required for the synthesis of lipopolysaccharides and exopolysaccharides in Xanthomonads. In this work, firstly we isolated a xanA transposon mutant (xanA::Tn5) and analyzed its phenotypes as biofilm formation, xanthan gum production, and pathogenesis on the sweet orange host. Moreover, to confirm the xanA role in the impaired phenotypes we further produced a non-polar deletion mutant (ΔxanA) and performed the complementation of both xanA mutants. In addition, we analyzed the percentages of the xanthan gum monosaccharides produced by X. citri wild-type and xanA mutant. The mutant strain had higher ratios of mannose, galactose, and xylose and lower ratios of rhamnose, glucuronic acid, and glucose than the wild-type strain. Such changes in the saccharide composition led to the reduction of xanthan yield in the xanA deficient strain, affecting also other important features in X. citri, such as biofilm formation and sliding motility. Moreover, we showed that xanA::Tn5 caused no symptoms on host leaves after spraying, a method that mimetics the natural infection condition. These results suggest that xanA plays an important role in the epiphytical stage on the leaves that is essential for the successful interaction with the host, including adaptive advantage for bacterial X. citri survival and host invasion, which culminates in pathogenicity.

13.
Sci Rep ; 10(1): 20865, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257732

RESUMO

Huanglongbing (HLB), caused mainly by 'Candidatus Liberibacter asiaticus' (CLas), is the most devastating citrus disease because all commercial species are susceptible. HLB tolerance has been observed in Poncirus trifoliata and their hybrids. A wide-ranging transcriptomic analysis using contrasting genotypes regarding HLB severity was performed to identify the genetic mechanism associated with tolerance to HLB. The genotypes included Citrus sinensis, Citrus sunki, Poncirus trifoliata and three distinct groups of hybrids obtained from crosses between C. sunki and P. trifoliata. According to bacterial titer and symptomatology studies, the hybrids were clustered as susceptible, tolerant and resistant to HLB. In P. trifoliata and resistant hybrids, genes related to specific pathways were differentially expressed, in contrast to C. sinensis, C. sunki and susceptible hybrids, where several pathways were reprogrammed in response to CLas. Notably, a genetic tolerance mechanism was associated with the downregulation of gibberellin (GA) synthesis and the induction of cell wall strengthening. These defense mechanisms were triggered by a class of receptor-related genes and the induction of WRKY transcription factors. These results led us to build a hypothetical model to understand the genetic mechanisms involved in HLB tolerance that can be used as target guidance to develop citrus varieties or rootstocks with potential resistance to HLB.


Assuntos
Citrus sinensis/genética , Doenças das Plantas/genética , Poncirus/genética , Transcriptoma/genética , Citrus sinensis/microbiologia , Suscetibilidade a Doenças/microbiologia , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Liberibacter/patogenicidade , Doenças das Plantas/microbiologia , Poncirus/microbiologia , Fatores de Transcrição/genética
14.
Planta ; 252(6): 103, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185761

RESUMO

MAIN CONCLUSION: Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.


Assuntos
Citrus , Expressão Gênica , Metiltransferases , Salicilatos , Xylella , Citrus/genética , Citrus/microbiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças das Plantas , Proteínas Recombinantes/genética , Salicilatos/química , Nicotiana/genética , Volatilização , Xylella/fisiologia
15.
Genet Mol Biol ; 43(2): e20190133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32568357

RESUMO

Citrus plants have been extremely affected by Huanglongbing (HLB) worldwide, causing economic losses. HLB disease causes disorders in citrus plants, leading to callose deposition in the phloem vessel sieve plates. Callose is synthesized by callose synthases, which are encoded by 12 genes (calS1- calS12)in Arabidopsis thaliana. We evaluated the expression of eight callose synthase genes from Citrus in hybrids between Citrus sunki and Poncirus trifoliata infected with HLB. The objective of this work was to identify possible tolerance loci combining the expression quantitative trait loci (eQTL) of different callose synthases and genetic Single-Nucleotide Polymorphism (SNP) maps of C. sunki and P. trifoliata. The expression data from all CscalS ranged widely among the hybrids. Furthermore, the data allowed the detection of 18 eQTL in the C. sunki map and 34 eQTL in the P. trifoliata map. In both maps, some eQTL for different CscalS were overlapped; thus, a single region could be associated with the regulation of more than one CscalS. The regions identified in this work can be interesting targets for future studies of Citrus breeding programs to manipulate callose synthesis during HLB infection.

16.
Mol Plant Microbe Interact ; 33(3): 519-527, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31973654

RESUMO

Xylella fastidiosa is a worldwide multihost pathogen that causes diseases in different crops. It is considered a new global threat and substantial efforts have been made in order to identify sources of resistance. Indeed, many genes have been associated with resistance to X. fastidiosa, but without functional validation. Here, we describe a C. reticulata gene homologous to the transcriptional factor RAP2.2 from Arabidopsis thaliana that increases resistance to citrus variegated chlorosis (CVC). This gene was previously detected in C. reticulata challenged with X. fastidiosa. Bioinformatics analysis together with subcellular localization and auto-activation assays indicated that RAP2.2 from C. reticulata (CrRAP2.2) is a transcriptional factor orthologous to AtRAP2.2. Thus, we used A. thaliana as a model host to evaluate the functional role of CrRAP2.2 in X. fastidiosa resistance. The inoculation of X. fastidiosa in the A. thaliana rap2.2 mutant resulted in a larger bacterial population, which was complemented by CrRAP2.2. In addition, symptoms of anthocyanin accumulation were higher in the mutant, whose phenotype was restored by CrRAP2.2, indicating that they have conserved functions in plant defense response. We therefore transformed C. sinensis with CrRAP2.2 and verified a positive correlation between CVC resistance and gene expression in transgenic lines. This is the first study using A. thaliana as model host that characterizes the function of a gene related to X. fastidiosa defense response and its application in genetic engineering to obtain citrus resistance to CVC.


Assuntos
Citrus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , Xylella/patogenicidade , Arabidopsis , Proteínas de Arabidopsis , Citrus/microbiologia , Proteínas de Ligação a DNA , Doenças das Plantas/microbiologia
17.
J Bacteriol ; 201(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31358614

RESUMO

Xanthomonas citri subsp. citri causes citrus canker disease worldwide in most commercial varieties of citrus. Its transmission occurs mainly by wind-driven rain. Once X. citri reaches a leaf, it can epiphytically survive by forming a biofilm, which enhances the persistence of the bacteria under different environmental stresses and plays an important role in the early stages of host infection. Therefore, the study of genes involved in biofilm formation has been an important step toward understanding the bacterial strategy for survival in and infection of host plants. In this work, we show that the ecnAB toxin-antitoxin (TA) system, which was previously identified only in human bacterial pathogens, is conserved in many Xanthomonas spp. We further show that in X. citri, ecnA is involved in important processes, such as biofilm formation, exopolysaccharide (EPS) production, and motility. In addition, we show that ecnA plays a role in X. citri survival and virulence in host plants. Thus, this mechanism represents an important bacterial strategy for survival under stress conditions.IMPORTANCE Very little is known about TA systems in phytopathogenic bacteria. ecnAB, in particular, has only been studied in bacterial human pathogens. Here, we showed that it is present in a wide range of Xanthomonas sp. phytopathogens; moreover, this is the first work to investigate the functional role of this TA system in Xanthomonas citri biology, suggesting an important new role in adaptation and survival with implications for bacterial pathogenicity.


Assuntos
Antitoxinas/genética , Citrus/microbiologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Humanos , Viabilidade Microbiana , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum , Virulência , Xanthomonas/metabolismo , Xanthomonas/fisiologia
18.
BMC Genomics ; 20(1): 554, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277573

RESUMO

BACKGROUND: Citrus are among the most important crops in the world. However, there are many diseases that affect Citrus caused by different pathogens. Citrus also hosts many symbiotic microorganisms in a relationship that may be advantageous for both organisms. The fungi Phyllosticta citricarpa, responsible for citrus black spot, and Phyllosticta capitalensis, an endophytic species, are examples of closely related species with different behavior in citrus. Both species are always biologically associated and are morphologically very similar, and comparing their genomes could help understanding the different lifestyles. In this study, a comparison was carried to identify genetic differences that could help us to understand the biology of P. citricarpa and P. capitalensis. RESULTS: Drafts genomes were assembled with sizes close to 33 Mb for both fungi, carrying 15,206 and 14,797 coding sequences for P. citricarpa and P. capitalensis, respectively. Even though the functional categories of these coding sequences is similar, enrichment analysis showed that the pathogenic species presents growth and development genes that may be necessary for the pathogenicity of P. citricarpa. On the other hand, family expansion analyses showed the plasticity of the genome of these species. Particular families are expanded in the genome of an ancestor of P. capitalensis and a recent expansion can also be detected among this species. Additionally, evolution could be driven by environmental cues in P. citricarpa. CONCLUSIONS: This work demonstrated genomic differences between P. citricarpa and P. capitalensis. Although the idea that these differences could explain the different lifestyles of these fungi, we were not able to confirm this hypothesis. Genome evolution seems to be of real importance among the Phyllosticta isolates and it is leading to different biological characteristics of these species.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Citrus/microbiologia , Genoma de Planta , Filogenia , Endófitos/genética , Enzimas/genética , Enzimas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genômica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia
19.
BMC Genomics ; 20(1): 110, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30727949

RESUMO

BACKGROUND: Citrus plants are commercially propagated by grafting, with the rootstock variety influencing a number of horticultural traits, including drought tolerance. Among the different rootstock varieties available for citrus propagation, 'Rangpur' lime is known to confer enhanced tolerance to drought as compared to other citrus rootstocks. The objective of this study was to investigate the poorly understood molecular responses underlying the rootstock-induced drought tolerance in sweet orange. RESULTS: RNA-Seq transcriptome analysis was carried out in leaves of sweet orange grafted on 'Rangpur' lime subjected to control and drought-stress treatments, under greenhouse conditions, using the Illumina HiSeq platform. A total of 41,827 unique transcripts were identified, among which 1764 transcripts showed significant variation (P ≤ 0.001) between the treatments, with 1081 genes induced and 683 repressed by drought-stress treatment. The transcripts were distributed in 44 different categories of cellular component, molecular function and biological process. Several genes related to cell metabolism, including those involved in the metabolisms of cell wall, carbohydrates and antioxidants, light reactions, biotic and abiotic stress responses, as well as genes coding for transcription factors (TFs), protein kinases (PKs) and proteins involved in the abscisic acid (ABA) and ethylene signaling pathways, were differentially regulated by drought stress. RNA-Seq data were validated by quantitative real-time PCR (qPCR) analysis and comparative analysis of expression of the selected genes between sweet orange grafted on drought-tolerant and -sensitive rootstocks revealed new candidate genes for drought tolerance in citrus. CONCLUSIONS: In conclusion, our results showed that only a relatively small but functionally diverse fraction of the sweet orange transcriptome, with functions in metabolism, cellular responses and regulation, was differentially regulated by drought stress. The data suggest that the rootstock-induced drought tolerance in sweet orange includes the transcriptional activation of genes related to the cell wall, soluble carbohydrate and antioxidant metabolisms, biotic and abiotic stress responses, TFs, PKs and ABA signaling pathway, and the downregulation of genes involved in the starch metabolism, light reactions and ethylene signaling. Future efforts to elucidate their functional roles and explore their potential in the citrus genetic improvement should benefit from this data.


Assuntos
Citrus sinensis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Ácido Abscísico/metabolismo , Citrus sinensis/metabolismo , Citrus sinensis/fisiologia , Secas , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Transcrição
20.
Front Microbiol ; 9: 1099, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887856

RESUMO

Phytopathogenic bacteria affect a wide range of crops worldwide and have a negative impact in agriculture due to their associated economic losses and environmental impacts. Together with other biotic and abiotic stress factors, they pose a threat to global food production. Therefore, understanding bacterial survival strategies is an essential step toward the development of new strategies to control plant diseases. One mechanism used by bacteria to survive under stress conditions is the formation of persister cells. Persisters are a small fraction of phenotypic variants within an isogenic population that exhibits multidrug tolerance without undergoing genetic changes. They are dormant cells that survive treatment with antimicrobials by inactivating the metabolic functions that are disrupted by these compounds. They are thus responsible for the recalcitrance of many human diseases, and in the same way, they are thought to contribute to the survival of bacterial phytopathogens under a range of stresses they face in the environment. It is believed that persister cells of bacterial phytopathogens may lead to the reoccurrence of disease by recovering growth and recolonizing the host plant after the end of stress. However, compared to human pathogens, little is known about persister cells in phytopathogens, especially about their genetic regulation. In this review, we describe the overall knowledge on persister cells and their regulation in bacterial phytopathogens, focusing on their ability to survive stress conditions, to recover from dormancy and to maintain virulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA