Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361256

RESUMO

Nanomaterials are potential candidates to improve the mechanical properties and durability of cementitious composites. SiC nanowhiskers (NWs) present exceptional mechanical properties and have already been successfully incorporated into different matrices. In this study, cementitious composites were produced with a superplasticizer (SP) and 0-1.0 wt % SiC NWs. Two different NWs were used: untreated (NT-NW) and thermally treated at 500 °C (500-NW). The rheological properties, cement hydration, mechanical properties, and microstructure were evaluated. The results showed that NWs incorporation statistically increased the yield stress of cement paste (by up to 10%) while it led to marginal effects in viscosity. NWs enhanced the early cement hydration, increasing the main heat flow peak. NWs incorporation increased the compressive strength, tensile strength, and thermal conductivity of composites by up to 56%, 66%, and 80%, respectively, while it did not statistically affect the water absorption. Scanning electron microscopy showed a good bond between NWs and cement matrix in addition to the bridging of cracks. Overall, the thermal treatment increased the specific surface area of NWs enhancing their effects on cement properties, while SP improved the NWs dispersion, increasing their beneficial effects on the hardened properties.

2.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202009

RESUMO

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA