Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38908504

RESUMO

CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.


Assuntos
Dióxido de Carbono , Hiperventilação , Locus Cerúleo , Norepinefrina , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Feminino , Masculino , Norepinefrina/metabolismo , Camundongos , Hipercapnia/metabolismo , Camundongos Endogâmicos C57BL , Pânico/efeitos dos fármacos , Pânico/fisiologia , Modelos Animais de Doenças , Transtorno de Pânico/metabolismo , Transtorno de Pânico/induzido quimicamente , Transtorno de Pânico/fisiopatologia , Camundongos Knockout , Caracteres Sexuais
3.
Am J Physiol Cell Physiol ; 326(5): C1334-C1344, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557356

RESUMO

Cardiac maturation represents the last phase of heart development and is characterized by morphofunctional alterations that optimize the heart for efficient pumping. Its understanding provides important insights into cardiac regeneration therapies. Recent evidence implies that adrenergic signals are involved in the regulation of cardiac maturation, but the mechanistic underpinnings involved in this process are poorly understood. Herein, we explored the role of ß-adrenergic receptor (ß-AR) activation in determining structural and functional components of cardiomyocyte maturation. Temporal characterization of tyrosine hydroxylase and norepinephrine levels in the mouse heart revealed that sympathetic innervation develops during the first 3 wk of life, concurrent with the rise in ß-AR expression. To assess the impact of adrenergic inhibition on maturation, we treated mice with propranolol, isolated cardiomyocytes, and evaluated morphofunctional parameters. Propranolol treatment reduced heart weight, cardiomyocyte size, and cellular shortening, while it increased the pool of mononucleated myocytes, resulting in impaired maturation. No changes in t-tubules were observed in cells from propranolol mice. To establish a causal link between ß-AR signaling and cardiomyocyte maturation, mice were subjected to sympathectomy, followed or not by restoration with isoproterenol treatment. Cardiomyocytes from sympathectomyzed mice recapitulated the salient immaturity features of propranolol-treated mice, with the additional loss of t-tubules. Isoproterenol rescued the maturation deficits induced by sympathectomy, except for the t-tubule alterations. Our study identifies the ß-AR stimuli as a maturation promoting signal and implies that this pathway can be modulated to improve cardiac regeneration therapies.NEW & NOTEWORTHY Maturation involves a series of morphofunctional alterations vital to heart development. Its regulatory mechanisms are only now being unveiled. Evidence implies that adrenergic signaling regulates cardiac maturation, but the mechanisms are poorly understood. To address this point, we blocked ß-ARs or performed sympathectomy followed by rescue experiments with isoproterenol in neonatal mice. Our study identifies the ß-AR stimuli as a maturation signal for cardiomyocytes and highlights the importance of this pathway in cardiac regeneration therapies.


Assuntos
Miócitos Cardíacos , Propranolol , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Camundongos , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Camundongos Endogâmicos C57BL , Isoproterenol/farmacologia , Masculino , Coração/efeitos dos fármacos , Células Cultivadas , Agonistas Adrenérgicos beta/farmacologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia
4.
Pflugers Arch ; 476(3): 365-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308122

RESUMO

To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.


Assuntos
Hipertensão , Corrida , Ratos , Animais , Ratos Endogâmicos SHR , Ocitocina/metabolismo , Ocitocina/farmacologia , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Vasopressinas/metabolismo , Hipertensão/metabolismo , Fadiga
5.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403228

RESUMO

The RF-amide peptides comprise a family of neuropeptides that includes the kisspeptin (Kp), the natural ligand of kisspeptin receptor (Kiss1r), and the RFamide-related peptide 3 (RFRP-3) that binds preferentially to the neuropeptide FF receptor 1 (Npffr1). Kp stimulates prolactin (PRL) secretion through the inhibition of tuberoinfundibular dopaminergic (TIDA) neurons. Because Kp also has affinity to Npffr1, we investigated the role of Npffr1 in the control of PRL secretion by Kp and RFRP-3. Intracerebroventricular (ICV) injection of Kp increased PRL and LH secretion in ovariectomized, estradiol-treated rats. The unselective Npffr1 antagonist RF9 prevented these responses, whereas the selective antagonist GJ14 altered PRL but not LH levels. The ICV injection of RFRP-3 in ovariectomized, estradiol-treated rats increased PRL secretion, which was associated with a rise in the dopaminergic activity in the median eminence, but had no effect on LH levels. The RFRP-3-induced increase in PRL secretion was prevented by GJ14. Moreover, the estradiol-induced PRL surge in female rats was blunted by GJ14, along with an amplification of the LH surge. Nevertheless, whole-cell patch clamp recordings showed no effect of RFRP-3 on the electrical activity of TIDA neurons in dopamine transporter-Cre recombinase transgenic female mice. We provide evidence that RFRP-3 binds to Npffr1 to stimulate PRL release, which plays a role in the estradiol-induced PRL surge. This effect of RFRP-3 is apparently not mediated by a reduction in the inhibitory tone of TIDA neurons but possibly involves the activation of a hypothalamic PRL-releasing factor.


Assuntos
Neuropeptídeos , Prolactina , Camundongos , Ratos , Feminino , Animais , Humanos , Prolactina/farmacologia , Prolactina/metabolismo , Kisspeptinas , Estradiol/farmacologia , Ovariectomia
6.
J Neuroendocrinol ; 34(11): e13204, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319592

RESUMO

Kisspeptin, neurokinin, and dynorphin (KNDy) neurons in the arcuate nucleus (ARC) control luteinizing hormone (LH) and prolactin (PRL) release, although their role in conveying the effects of estradiol (E2 ) to these hormones is not well understood. We performed a longitudinal evaluation of female rats in which KNDy neurons were ablated using a neurokinin-3 receptor agonist conjugated with saporin (NK3-SAP) to investigate the impact of the reduction of KNDy neurons on the E2 regulation of gonadal and PRL axes. NK3-SAP rats, bearing a moderate loss of ARC kisspeptin-immunoreactive (-IR) neurons (50%-90%), displayed irregular estrous cycles but essentially unaltered follicular development and a normal number of corpora lutea. Rats were then ovariectomized (OVX) and treated with a positive-feedback dose of E2 (OVX + E2 ). LH and PRL were measured in the tail blood by an enzyme-linked immunosorbent assay. The E2 -induced LH surge was amplified, whereas the PRL rise was decreased in NK3-SAP rats compared to Blank-SAP control. After 10 days of no hormonal treatment, basal LH levels were equally elevated in NK3-SAP and controls. Tyrosine hydroxylase (TH) phosphorylation in the median eminence, in turn, was increased in NK3-SAP rats, with no change in the number of ARC TH-IR neurons. Thus, KNDy neurons exert concurrent and opposite roles in the E2 -induced surges of LH and PRL. The partial loss of KNDy neurons disrupts ovarian cyclicity but does not preclude ovulation, consistent with the disinhibition of the LH preovulatory surge. Conversely, KNDy neurons tonically inhibit the enzymatic activity of tuberoinfundibular dopaminergic neurons, which appears to facilitate PRL release in response to E2 .


Assuntos
Kisspeptinas , Prolactina , Feminino , Ratos , Animais , Kisspeptinas/metabolismo , Prolactina/farmacologia , Estradiol/farmacologia , Hormônio Luteinizante , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase , Neurocinina B/metabolismo
7.
J Therm Biol ; 109: 103317, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195384

RESUMO

We evaluated ventilation (V˙E), body temperature (TB), oxygen consumption (V˙ O2), respiratory equivalent (V˙E/ V˙ O2), and monoamine concentrations of 14-day-old (14d) male and female chicks from eggs incubated at low (LT, 36 °C), control (CT, 37.5 °C) and high (HT, 39 °C) temperature during the early embryonic phase, to normoxia, hypercapnia and hypoxia under exposure to cold environment (20 °C). At normoxia, acute cold exposure did not affect the ventilatory variables, with the exception of HT males, in which cold prevented the reduced V˙E observed under thermoneutral conditions. Exposure to 20 °C caused a decrease in TB in both sexes, and LT and HT females presented a greater hypothermic response. Hypercapnia combined with cold did not alter the ventilatory variables, but LT females and CT males and females showed a blunted CO2-induced hyperventilation due to a higher V˙ O2, compared to the same groups in thermoneutral conditions. Unlike with thermoneutral conditions, the blunted hypercapnic hyperventilation observed in the HT groups was not observed during cold challenge. CO2 exposure promoted a similar decrease in TB in the thermoneutral and acutely cold exposed groups, while LT females under cold condition presented a blunted hypothermic response. During hypoxia, cold challenge attenuated the increase in V˙E in LT females and HT males, due to changes in VT. Hypoxic metabolic depression was greater in LT females and males and HT males during cold exposure, while no change in V˙E/ V˙ O2 was observed. The only alteration in monoaminergic concentration under cold challenge was an increase in brainstem 5-HIAA and 5-HIAA/5-HT ratio in HT females, and an enhanced 5-HT concentration in HT males. In summary, thermal manipulation during embryogenesis induces 14d old chicks to respond differently to cold stress with LT females and HT males being more sensitive.


Assuntos
Hipercapnia , Hipotermia , Animais , Encéfalo/metabolismo , Dióxido de Carbono , Galinhas/fisiologia , Feminino , Ácido Hidroxi-Indolacético , Hipercapnia/metabolismo , Hiperventilação , Hipóxia , Masculino , Consumo de Oxigênio/fisiologia , Serotonina/metabolismo
8.
J Neuroendocrinol ; 34(10): e13188, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306200

RESUMO

Postmenopausal hot flushes are caused by lack of estradiol (E2) but their neuroendocrine basis is still poorly understood. Here, we investigated the interrelationship between norepinephrine and hypothalamic neurons, with emphasis on kisspeptin neurons in the arcuate nucleus (ARC), as a regulatory pathway in the vasomotor effects of E2. Ovariectomized (OVX) rats displayed increased tail skin temperature (TST), and this increase was prevented in OVX rats treated with E2 (OVX + E2). Expression of Fos in the hypothalamus and the number of ARC kisspeptin neurons coexpressing Fos were increased in OVX rats. Likewise, brainstem norepinephrine neurons of OVX rats displayed higher Fos immunoreactivity associated with the increase in TST. In the ARC, the density of dopamine-ß-hydroxylase (DBH)-immunoreactive (ir) fibers was not altered by E2 but, importantly, DBH-ir terminals were found in close apposition to kisspeptin cells, revealing norepinephrine inputs to ARC kisspeptin neurons. Intracerebroventricular injection of the α2-adrenergic agonist clonidine (CLO) was used to reduce central norepinephrine release, confirmed by the decreased 3-methoxy-4-hydroxyphenylglycol/norepinephrine ratio in the preoptic area and ARC. Accordingly, CLO treatment in OVX rats reduced ARC Kiss1 mRNA levels and TST to the values of OVX + E2 rats. Conversely, CLO stimulated Kiss1 expression in the anteroventral periventricular nucleus (AVPV) and increased luteinizing hormone secretion. These findings provide evidence that augmented heat dissipation in OVX rats involves the increase in central norepinephrine that modulates hypothalamic areas related to thermoregulation, including ARC kisspeptin neurons. This neuronal network is suppressed by E2 and its imbalance may be implicated in the vasomotor symptoms of postmenopausal hot flushes.


Assuntos
Kisspeptinas , Hormônio Luteinizante , Ratos , Feminino , Animais , Humanos , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Norepinefrina/farmacologia , Temperatura Alta , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Estradiol , Regulação da Temperatura Corporal , Ovariectomia
9.
Endocrinology ; 163(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803590

RESUMO

Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.


Assuntos
Neurônios GABAérgicos , Receptores da Somatotropina , Animais , Feminino , Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores para Leptina/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo
10.
Endocrinology ; 163(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35789268

RESUMO

Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERß, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERß potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.


Assuntos
Estradiol , Kisspeptinas , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Receptores de Estrogênio/metabolismo
11.
Pflugers Arch ; 474(11): 1185-1200, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35871663

RESUMO

Pregnancy is highly affected by anxiety disorders, which may be treated with benzodiazepines, especially diazepam (DZP), that can cross the placental barrier and interact with the fetal GABAergic system. We tested whether prenatal exposure to DZP promotes sex-specific postnatal changes in the respiratory control of rats. We evaluated ventilation ([Formula: see text]) and oxygen consumption ([Formula: see text] O2) in resting conditions and under hypercapnia (7% CO2) and hypoxia (10% O2) in newborn [postnatal day (P) 0-1 and P12-13)] and young (P21-22) rats from mothers treated with DZP during pregnancy. We also analyzed brainstem monoamines at the same ages. DZP exposure had minimal effects on room air-breathing variables in females, but caused hypoventilation (drop in [Formula: see text]/[Formula: see text] O2) in P12-13 males, lasting until P21-22. The hypercapnic ventilatory response was attenuated in P0-1 and P12-13 DZP-treated females mainly by a decrease in tidal volume (VT), whereas males had a reduction in respiratory frequency (fR) at P12-13. Minor changes were observed in hypoxia, but an attenuation in [Formula: see text] was seen in P12-13 males. In the female brainstem, DZP increased dopamine concentration and decreased 5-hydroxyindole-3-acetic acid (5-HIAA) and the 3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine ratio at P0-1, and reduced DOPAC concentration at P12-13. In males, DZP decreased brainstem noradrenaline at P0-1. Our results demonstrate that prenatal DZP exposure reduces CO2 chemoreflex only in postnatal females and does not affect hypoxia-induced hyperventilation in both sexes. In addition, prenatal DZP alters brainstem monoamine concentrations throughout development differently in male and female rats.


Assuntos
Dióxido de Carbono , Diazepam , Ácido 3,4-Di-Hidroxifenilacético , Acetatos , Animais , Diazepam/farmacologia , Dopamina , Feminino , Ácido Hidroxi-Indolacético , Hipercapnia , Hipóxia , Masculino , Norepinefrina , Placenta , Gravidez , Ratos
12.
Endocrinology ; 163(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395079

RESUMO

Hypophysiotropic somatostatin (SST) neurons in the periventricular hypothalamic area express growth hormone (GH) receptor (GHR) and are frequently considered as the key neuronal population that mediates the negative feedback loop controlling the hypothalamic-GH axis. Additionally, insulin-like growth factor-1 (IGF-1) may also act at the hypothalamic level to control pituitary GH secretion via long-loop negative feedback. However, to the best of our knowledge, no study so far has tested whether GHR or IGF-1 receptor (IGF1R) signaling specifically in SST neurons is required for the homeostatic control of GH secretion. Here we show that GHR ablation in SST neurons did not impact the negative feedback mechanisms that control pulsatile GH secretion or body growth in male and female mice. The sex difference in hepatic gene expression profile was only mildly affected by GHR ablation in SST neurons. Similarly, IGF1R ablation in SST neurons did not affect pulsatile GH secretion, body growth, or hepatic gene expression. In contrast, simultaneous ablation of both GHR and IGF1R in SST-expressing cells increased mean GH levels and pulse amplitude in male and female mice, and partially disrupted the sex differences in hepatic gene expression. Despite the increased GH secretion in double knockout mice, no alterations in body growth and serum or liver IGF-1 levels were observed. In summary, GHR and IGF1R signaling in SST neurons play a redundant role in the control of GH secretion. Furthermore, our results reveal the importance of GH/IGF-1 negative feedback mechanisms on SST neurons for the establishment of sex differences in hepatic gene expression profile.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Animais , Feminino , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Somatostatina/metabolismo
13.
Am J Physiol Cell Physiol ; 322(4): C794-C801, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264016

RESUMO

It is well known that cholinergic hypofunction contributes to cardiac pathology, yet, the mechanisms involved remain unclear. Our previous study has shown that genetically engineered model of cholinergic deficit, the vesicular acetylcholine transporter knockdown homozygous (VAChT KDHOM) mice, exhibit pathological cardiac remodeling and a gradual increase in cardiac mass with aging. Given that an increase in cardiac mass is often caused by adrenergic hyperactivity, we hypothesized that VAChT KDHOM mice might have an increase in cardiac norepinephrine (NE) levels. We thus investigated the temporal changes in NE content in the heart from 3-, 6-, and 12-mo-old VAChT mutants. Interestingly, mice with cholinergic hypofunction showed a gradual elevation in cardiac NE content, which was already increased at 6 mo of age. Consistent with this finding, 6-mo-old VAChT KDHOM mice showed enhanced sympathetic activity and a greater abundance of tyrosine hydroxylase positive sympathetic nerves in the heart. VAChT mutants exhibited an increase in peak calcium transient, and mitochondrial oxidative stress in cardiomyocytes along with enhanced G protein-coupled receptor kinase 5 (GRK5) and nuclear factor of activated T-cells (NFAT) staining in the heart. These are known targets of adrenergic signaling in the cell. Moreover, vagotomized-mice displayed an increase in cardiac NE content confirming the data obtained in VAChT KDHOM mice. Establishing a causal relationship between acetylcholine and NE, VAChT KDHOM mice treated with pyridostigmine, a cholinesterase inhibitor, showed reduced cardiac NE content, rescuing the phenotype. Our findings unveil a yet unrecognized role of cholinergic signaling as a modulator of cardiac NE, providing novel insights into the mechanisms that drive autonomic imbalance.


Assuntos
Colinérgicos , Norepinefrina , Adrenérgicos , Animais , Camundongos , Miócitos Cardíacos , Proteínas Vesiculares de Transporte de Acetilcolina/genética
14.
FASEB J ; 35(10): e21886, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473369

RESUMO

The cardiac circadian clock is responsible for the modulation of different myocardial processes, and its dysregulation has been linked to disease development. How this clock machinery is regulated in the heart remains an open question. Because noradrenaline (NE) can act as a zeitgeber in cardiomyocytes, we tested the hypothesis that adrenergic signaling resets cardiac clock gene expression in vivo. In its anti-phase with Clock and Bmal1, cardiac Per1 abundance increased during the dark phase, concurrent with the rise in heart rate and preceded by an increase in NE levels. Sympathetic denervation altered Bmal1 and Clock amplitude, while Per1 was affected in both amplitude and oscillatory pattern. We next treated mice with a ß-adrenergic receptor (ß-AR) blocker. Strikingly, the ß-AR blockade during the day suppressed the nocturnal increase in Per1 mRNA, without altering Clock or Bmal1. In contrast, activating ß-AR with isoproterenol (ISO) promoted an increase in Per1 expression, demonstrating its responsiveness to adrenergic input. Inhibitors of ERK1/2 and CREB attenuated ISO-induced Per1 expression. Upstream of ERK1/2, PI3Kγ mediated ISO induction of Per1 transcription, while activation of ß2-AR, but not ß1-AR induced increases in ERK1/2 phosphorylation and Per1 expression. Consistent with the ß2-induction of Per1 mRNA, ISO failed to activate ERK1/2 and elevate Per1 in the heart of ß2-AR-/- mice, whereas a ß2-AR antagonist attenuated the nocturnal rise in Per1 expression. Our study established a link between NE/ß2-AR signaling and Per1 oscillation via the PI3Ky-ERK1/2-CREB pathway, providing a new framework for understanding the physiological mechanism involved in resetting cardiac clock genes.


Assuntos
Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Miocárdio/metabolismo , Proteínas Circadianas Period/biossíntese , Receptores Adrenérgicos beta 2/metabolismo , Fatores de Transcrição ARNTL/biossíntese , Fatores de Transcrição ARNTL/genética , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Proteínas CLOCK/biossíntese , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Receptores Adrenérgicos beta 2/genética
15.
Brain Res Bull ; 177: 64-72, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536522

RESUMO

The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic control, which integrates thermoregulation centers and sympathetic outflow to thermoeffector organs. PVN neurons express the neuronal isoform of nitric oxide synthase (nNOS) whose expression is locally upregulated by physical exercise. Thus, the aim of the present study was to evaluate the role of nNOS in the PVN in the exercise-induced hyperthermia. Seven days after surgery, male Wistar rats received bilateral intra-PVN microinjections of the selective nNOS inhibitor Nw-Propyl-L-Arginine (NPLA) or vehicle (saline) and were submitted to an acute progressive exercise session on a treadmill until fatigue. Abdominal and tail skin temperature (Tabd and Ttail, respectively) were measured, and the threshold (Hthr; °C) and sensitivity (Hsen) for heat dissipation calculated. Performance variables were also collected. During the progressive exercise protocol, all animals displayed an increase in the Tabd. However, compared to vehicle group, the microinjection of NPLA in the PVN attenuated the exercise-induced hyperthermia. There was no difference in Ttail or Hthr between NPLA and control rats. In contrast, Hsen was increased in the NPLA group compared to vehicle. In addition, heat storage was lower in NPLA-treated animals. Despite the temperature differences, inhibition of nNOS in the PVN did not affect running performance on the treadmill. These results suggest that nitrergic signaling within the PVN, under nNOS activation, drives the increase of body temperature, being necessary for the proper thermal regulatory mechanisms during progressive exercise-induced hyperthermia.


Assuntos
Hipertermia Induzida , Núcleo Hipotalâmico Paraventricular , Animais , Hipotálamo/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar
16.
Front Physiol ; 12: 699142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220555

RESUMO

The first third of incubation is critical for embryonic development, and environmental changes during this phase can affect the physiology and survival of the embryos. We evaluated the effects of low (LT), control (CT), and high (HT) temperatures during the first 5 days of incubation on ventilation ( V . E ), body temperature (Tb), oxygen consumption ( V . O2), respiratory equivalent ( V . E / V . O2), and brain monoamines on 3-days-old (3d) and 14-days-old (14d) male and female chickens. The body mass of LT animals of both ages and sexes was higher compared to HT and CT animals (except for 3d males). The heart mass of 14d HT animals was higher than that of CT animals. Thermal manipulation did not affect V . E , V . O2 or V . E / V . O2 of 3d animals in normoxia, except for 3d LT males V . E , which was lower than CT. Regarding 14d animals, the HT females showed a decrease in V . E and V . O2 compared to CT and LT groups, while the HT males displayed a lower V . O2 compared to CT males, but no changes in V . E / V . O2. Both sexes of 14d HT chickens presented a greater Tb compared to CT animals. Thermal manipulations increased the dopamine turnover in the brainstem of 3d females. No differences were observed in ventilatory and metabolic parameters in the 3d animals of either sexes, and 14d males under 7% CO2. The hypercapnic hyperventilation was attenuated in the 14d HT females due to changes in V . O2, without alterations in V . E . The 14d LT males showed a lower V . E , during hypercapnia, compared to CT, without changes in V . O2, resulting in an attenuation in V . E / V . O2. During hypoxia, 3d LT females showed an attenuated hyperventilation, modulated by a higher V . O2. In 14d LT and HT females, the increase in V . E was greater and the hypometabolic response was attenuated, compared to CT females, which resulted in no change in the V . E / V . O2. In conclusion, thermal manipulations affect hypercapnia-induced hyperventilation more so than hypoxic challenge, and at both ages, females are more affected by thermal manipulation than males.

17.
J Neuroendocrinol ; 33(3): e12957, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33769619

RESUMO

Arcuate nucleus (ARH) dopaminergic neurones regulate several biological functions, including prolactin secretion and metabolism. These cells are responsive to growth hormone (GH), although it is still unknown whether GH action on ARH dopaminergic neurones is required to regulate different physiological aspects. Mice carrying specific deletion of GH receptor (GHR) in tyrosine hydroxylase (TH)- or dopamine transporter (DAT)-expressing cells were produced. We investigated possible changes in energy balance, glucose homeostasis, fertility, pup survival and restraint stress-induced prolactin release. GHR deletion in DAT- or TH-expressing cells did not cause changes in food intake, energy expenditure, ambulatory activity, nutrient oxidation, glucose tolerance, insulin sensitivity and counter-regulatory response to hypoglycaemia in male and female mice. In addition, GHR deletion in dopaminergic cells caused no gross effects on reproduction and pup survival. However, restraint stress-induced prolactin release was significantly impaired in DAT- and TH-specific GHR knockout male mice, as well as in pegvisomant-treated wild-type males, whereas an intact response was observed in females. Patch clamp recordings were performed in ARH DAT neurones and, in contrast to prolactin, GH did not cause acute changes in the electrical activity of DAT neurones. Furthermore, TH phosphorylation at Ser40 in ARH neurones and median eminence axonal terminals was not altered in DAT-specific GHR knockout male mice during restraint stress. In conclusion, GH action in dopaminergic neurones is required for stress-induced prolactin release in male mice, suggesting the existence of sex differences in the capacity of GHR signalling to affect prolactin secretion. The mechanism behind this regulation still needs to be identified.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Prolactina/metabolismo , Receptores da Somatotropina/metabolismo , Estresse Psicológico/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Fertilidade , Glucose/metabolismo , Hormônio do Crescimento Humano/análogos & derivados , Hormônio do Crescimento Humano/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptores da Somatotropina/genética , Reprodução , Restrição Física , Estresse Psicológico/psicologia , Sobrevida , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Am J Physiol Cell Physiol ; 320(4): C602-C612, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296286

RESUMO

Cholinesterase inhibitors are used in postmenopausal women for the treatment of neurodegenerative diseases. Despite their widespread use in the clinical practice, little is known about the impact of augmented cholinergic signaling on cardiac function under reduced estrogen conditions. To address this gap, we subjected a genetically engineered murine model of systemic vesicular acetylcholine transporter overexpression (Chat-ChR2) to ovariectomy and evaluated cardiac parameters. Left-ventricular function was similar between Chat-ChR2 and wild-type (WT) mice. Following ovariectomy, WT mice showed signs of cardiac hypertrophy. Conversely, ovariectomized (OVX) Chat-ChR2 mice evolved to cardiac dilation and failure. Transcript levels for cardiac stress markers atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were similarly upregulated in WT/OVX and Chat-ChR2/OVX mice. 17ß-Estradiol (E2) treatment normalized cardiac parameters in Chat-ChR2/OVX to the Chat-ChR2/SHAM levels, providing a link between E2 status and the aggravated cardiac response in this model. To investigate the cellular basis underlying the cardiac alterations, ventricular myocytes were isolated and their cellular area and contractility were assessed. Myocytes from WT/OVX mice were wider than WT/SHAM, an indicative of concentric hypertrophy, but their fractional shortening was similar. Conversely, Chat-ChR2/OVX myocytes were elongated and presented contractile dysfunction. E2 treatment again prevented the structural and functional changes in Chat-ChR2/OVX myocytes. We conclude that hypercholinergic mice under reduced estrogen conditions do not develop concentric hypertrophy, a critical compensatory adaptation, evolving toward cardiac dilation and failure. This study emphasizes the importance of understanding the consequences of cholinesterase inhibition, used clinically to treat dementia, for cardiac function in postmenopausal women.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Estrogênios/deficiência , Coração/inervação , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ovariectomia , Transdução de Sinais , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Acetilcolina/genética
19.
J Endocrinol ; 247(1): 101-114, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755993

RESUMO

Many diseases of the respiratory system occur differently in males and females, indicating a possible role of gonadal hormones in respiratory control. We hypothesized that testosterone (T) is important for the ventilatory chemosensitivity responses in males. To test this hypothesis, we evaluated ventilation (V̇ E), metabolic rate and body temperature (Tb) under normoxia/normocapnia, hypercapnia and hypoxia in orchiectomized (ORX), ORX with testosterone replacement (ORX + T) or flutamide (FL, androgen receptor blocker)-treated rats. We also performed immunohistochemistry to evaluate the presence of androgen receptor (AR) in the carotid body (CB) of intact males. Orchiectomy promoted a reduction V̇ E and ventilatory equivalent (V̇ E /V̇ O2) under room-air conditions, which was restored with testosterone treatment. Moreover, during hypoxia or hypercapnia, animals that received testosterone replacement had a higher V̇ E and V̇ E /V̇ O2 than control and ORX, without changes in metabolic and thermal variables. Flutamide decreased the hypoxic ventilatory response without changing the CO2-drive to breathe, suggesting that the testosterone effect on hypercapnic hyperventilation does not appear to involve the AR. We also determined the presence of AR in the CB of intact animals. Our findings demonstrate that testosterone seems to be important for maintaining resting V̇ E in males. In addition, the influence of testosterone on V̇ E, either during resting conditions or under hypoxia and hypercapnia, seems to be a direct and specific effect, as no changes in metabolic rate or Tb were observed during any treatment. Finally, a putative site of testosterone action during hypoxia is the CB, since we detected the presence of AR in this structure.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Fenômenos Fisiológicos Respiratórios , Testosterona/fisiologia , Antagonistas de Receptores de Andrógenos/farmacocinética , Animais , Corpo Carotídeo/química , Flutamida/farmacologia , Masculino , Orquiectomia , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar , Receptores Androgênicos/análise , Receptores Androgênicos/fisiologia , Testosterona/administração & dosagem
20.
J Neuroendocrinol ; 32(11): e12880, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32627906

RESUMO

Dopamine from tuberoinfundibular dopaminergic (TIDA) neurones tonically inhibits prolactin (PRL) secretion. Lactational hyperprolactinaemia is associated with a reduced activity of TIDA neurones. However, it remains controversial whether the suckling-induced PRL surge is driven by an additional decrease in dopamine release or by stimulation from a PRL-releasing factor. In the present study, we further investigated the role of dopamine in the PRL response to suckling. Non-lactating (N-Lac), lactating 4 hour apart from pups (Lac), Lac with pups return and suckling (Lac+S), and post-lactating (P-Lac) rats were evaluated. PRL levels were elevated in Lac rats and increased linearly within 30 minutes of suckling in Lac+S rats. During the rise in PRL levels, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME) and neurointermediate lobe of the pituitary did not differ between Lac+S and Lac rats. However, dopamine and DOPAC were equally decreased in Lac and Lac+S compared to N-Lac and P-Lac rats. Suckling, in turn, reduced phosphorylation of tyrosine hydroxylase in the ME of Lac+S. Domperidone and bromocriptine were used to block and activate pituitary dopamine D2 receptors, respectively. Domperidone increased PRL secretion in both N-Lac and Lac rats, and suckling elicited a robust surge of PRL over the high basal levels in domperidone-treated Lac+S rats. Conversely, bromocriptine blocked the PRL response to suckling. The findings obtained in the present study provide evidence that dopamine synthesis and release are tonically reduced during lactation, whereas dopamine is still functional with respect to inhibiting PRL secretion. However, there appears to be no further reduction in dopamine release associated with the suckling-induced rise in PRL. Instead, the lower dopaminergic tone during lactation appears to be required to sensitise the pituitary to a suckling-induced PRL-releasing factor.


Assuntos
Animais Lactentes/fisiologia , Dopamina/fisiologia , Hipotálamo/fisiologia , Lactação/fisiologia , Prolactina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Bromocriptina/farmacologia , Domperidona/farmacologia , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Eminência Mediana/efeitos dos fármacos , Eminência Mediana/metabolismo , Adeno-Hipófise Parte Intermédia/efeitos dos fármacos , Adeno-Hipófise Parte Intermédia/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA