RESUMO
Among different types, Chinese propolis (ChPs) and Brazilian green propolis (BrGPs) have been shown to contain multi-functional properties. Despite extensive research in the field, reports comparing propolis from different geographical areas are still limited, compromising our current understanding of the potential therapeutic effect associated with propolis and its derived compounds. Herein, a comparative study between ChPs and BrGPs including their metabolite profile and bioactivities was performed. Interestingly, even when ChPs and BrGPs showed similar anti-inflammatory potential, our results showed that they contained very different levels of ethanol extract, total flavonoids and total phenolic acids and in fact, LC-MS metabolic profiling and pattern recognition could effectively distinguish ChPs and BrGPs. Moreover, all the propolis samples tested showed good anti-oxidant activity and no significant difference of free radical scavenging capacity existed between ChPs and BrGPs. In conclusion, ChPs and BrGPs have a distinct chemome, but their antioxidant and anti-inflammatory activities are similar.
Assuntos
Anti-Inflamatórios/farmacologia , Própole/farmacologia , Animais , Anti-Inflamatórios/química , Brasil , China , Flavonoides/química , Flavonoides/farmacologia , Masculino , Camundongos , Estrutura Molecular , Análise de Componente Principal , Própole/químicaRESUMO
Brazilian green propolis is a complex mixture of natural compounds that is difficult to analyze and standardize; as a result, controlling its quality is challenging. In this study, we used the positive and negative modes of ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectrometry in conjunction with high-performance liquid chromatography for the identification and characterization of seven phenolic acid compounds in Brazilian green propolis. The optimal operating conditions for the electrospray ionization source were capillary voltage of 3500 V and drying and sheath gas temperatures of 320 °C and 350 °C, respectively. Drying and sheath gas flows were set to 8 L/min and 11 L/min, respectively. Brazilian green propolis was separated using the HPLC method, with chromatograms for samples and standards measured at 310 nm. UPLC-ESI-QTOF-MS was used to identify the following phenolic compounds: Chlorogenic acid, caffeic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, caffeic acid phenethyl ester (CAPE), and artepillin C. Using a methodologically validated HPLC method, the seven identified phenolic acids were then quantified among different Brazilian green propolis. Results indicated that there were no significant differences in the content of a given phenolic acid across different Brazilian green propolis samples, owing to the same plant resin sources for each sample. Isochlorogenic acid B had the lowest content (0.08 ± 0.04) across all tested Brazilian green propolis samples, while the artepillin C levels were the highest (2.48 ± 0.94). The total phenolic acid content across Brazilian green propolis samples ranged from 2.14-9.32%. Notably, artepillin C quantification is an important factor in determining the quality index of Brazilian green propolis; importantly, it has potential as a chemical marker for the development of better quality control methods for Brazilian green propolis.