Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984406

RESUMO

Hydrogen storage in Mg/MgH2 materials is still an active research topic. In this work, a mixture of Mg-15wt.% VCl3 was produced by cryogenic ball milling and tested for hydrogen storage. Short milling time (1 h), liquid N2 cooling, and the use of VCl3 as an additive produced micro-flaked particles approximately 2.5-5.0 µm thick. The Mg-15wt.% VCl3 mixture demonstrated hydrogen uptake even at near room-temperature (50 °C). Mg-15wt.% VCl3 achieved ~5 wt.% hydrogen in 1 min at 300 °C/26 bar. The fast hydriding kinetics is attributed to a reduction of the activation energy of the hydriding reaction (Ea hydriding = 63.8 ± 5.6 kJ/mol). The dehydriding reaction occurred at high temperatures (300-350 °C) and 0.8-1 bar hydrogen pressure. The activation energy of the dehydriding reaction is 123.11 ± 0.6 kJ/mol. Cryomilling and VCl3 drastically improved the hydriding/dehydriding of Mg/MgH2.

2.
Materials (Basel) ; 14(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069281

RESUMO

This review consists of a compilation of synthesis methods and several properties of borohydrides beyond Groups I and II, i.e., transition metals, main group, lanthanides, and actinides. The reported properties include crystal structure, decomposition temperature, ionic conductivity, photoluminescence, etc., when available. The compiled properties reflect the rich chemistry and possible borohydrides' application in areas such as hydrogen storage, electronic devices that require an ionic conductor, catalysis, or photoluminescence. At the end of the review, two short but essential sections are included: a compilation of the decomposition temperature of all reported borohydrides versus the Pauling electronegativity of the cations, and a brief discussion of the possible reactions occurring during diborane emission, including some strategies to reduce this inconvenience, particularly for hydrogen storage purposes.

3.
Materials (Basel) ; 12(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450714

RESUMO

Hydrogen storage is widely recognized as one of the biggest not solved problem within hydrogen technologies. The slow development of the materials and systems for hydrogen storage has resulted in a slow spread of hydrogen applications. There are many families of materials that can store hydrogen; among them, the alanate family can be of interest. Basic research papers and reviews have been focused on alanates of group 1 and 2. However, there are many alanates of transition metals, main group, and lanthanides that deserve attention in a review. This work is a comprehensive compilation of all known alanates. The approaches towards tuning the kinetics and thermodynamics of alanates are also covered in this review. These approaches are the formation of reactive composites, double cation alanates, or anion substitution. The crystallographic and X-ray diffraction characteristics of each alanate are presented along with this review. In the final sections, a discussion of the infrared, Raman, and thermodynamics was included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA