Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1818(9): 2260-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22546530

RESUMO

Research on biological influence of vanadium has gained major importance because it exerts potent toxic, mutagenic, and genotoxic effects on a wide variety of biological systems. However, hematological toxicity is one of the less studied effects. The lack of information on this issue prompted us to study the structural effects induced on the human erythrocyte membrane by vanadium (V). Sodium orthovanadate was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence in order that orthovanadate interacted with red cell membranes as follows: a) in scanning electron microscopy (SEM) studies it was observed that morphological changes on human erythrocytes were induced; b) fluorescence spectroscopy experiments in isolated unsealed human erythrocyte membranes (IUM) showed that an increase in the molecular dynamics and/or water content at the shallow depth of the lipids glycerol backbone at concentrations as low as 50µM was produced; c) X-ray diffraction studies showed that orthovanadate 0.25-1mM range induced increasing structural perturbation to DMPE; d) somewhat similar effects were observed by differential scanning calorimetry (DSC) with the exception of the fact that DMPC pretransition was shown to be affected; and e) fluorescence spectroscopy experiments performed in DMPC large unilamellar vesicles (LUV) showed that at very low concentrations induced changes in DPH fluorescence anisotropy at 18°C. Additional experiments were performed in mice cholinergic neuroblastoma SN56 cells; a statistically significant decrease of cell viability was observed on orthovanadate in low or moderate concentrations.


Assuntos
Eritrócitos/metabolismo , Neuroblastoma/metabolismo , Sódio/farmacologia , Vanadatos/farmacologia , Acetilcoenzima A/química , Animais , Anisotropia , Varredura Diferencial de Calorimetria/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Dimiristoilfosfatidilcolina/química , Eritrócitos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Lipídeos/química , Camundongos , Microscopia Eletrônica de Varredura/métodos , Fosfatidiletanolaminas/química , Espectrometria de Fluorescência/métodos , Temperatura , Lipossomas Unilamelares/química , Vanádio/farmacologia
2.
Chem Phys Lipids ; 134(1): 69-77, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15752465

RESUMO

The effects of Fe(3+) and Fe(2+) on molecular models of biomembranes were investigated. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids located in the outer and inner moieties of cell membranes, respectively. X-ray studies showed that very low concentrations of Fe(3+) affected DMPC organization and 10(-3)M induced a total loss of its multilamellar periodic stacking. Experiments carried out with Fe(2+) on DMPC showed weaker effects than those induced by Fe(3+) ions. Similar experiments were performed on DMPE bilayers. Fe(3+) from 10(-7)M up to 10(-4)M had practically no effect on DMPE structure. However, 10(-3)M Fe(3+) induced a deep perturbation of the multilamellar structure of DMPE. However, 10(-3)M Fe(2+) had no effect on DMPE organization practically. Differential scanning calorimetry measurements also revealed different effects of Fe(3+) and Fe(2+) on the phase transition and other thermal properties of the examined lipids. In conclusion, the results obtained indicate that iron ions interact with phospholipid bilayers perturbing their structures. These findings are consistent with the observation that iron ions change cell membrane fluidity and, therefore, affect its functions.


Assuntos
Membrana Celular/química , Ferro/química , Modelos Moleculares , Varredura Diferencial de Calorimetria , Cromatografia em Camada Fina , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA