RESUMO
The transatlantic slave trade lasted over three centuries and represents one of the largest forced migrations in human history. The biological repercussions are not well understood especially in African-Caribbean populations. This paper explores the effects of the forced migration, isolation, and admixture on genetic diversity using mitochondrial and Y chromosome markers for 501 individuals from Dominica, Grenada, Jamaica, St. Kitts, St. Lucia, St. Thomas, St. Vincent, and Trinidad. Genetic diversity and population genetic structure analyses of mitochondrial data and Y chromosome data indicate that there was no post-migration loss in genetic diversity in the African derived lineages. Genetic structure was observed between the islands for both genetic systems. This may be due to isolation, differences in the number and source of Africans imported, depopulation of indigenous populations, and/or differences in colonization history. Nearly 10% of the individuals belonged to a non-African mitochondrial haplogroup. In contrast, Y chromosome admixture estimates showed that there was nearly 30% European contribution to these Caribbean populations. This study sheds light on the history of Africans in the Americas as well as contributing to our understanding of the nature and extent of diversity within the African Diaspora.