Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 16028, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375480

RESUMO

Camouflage has been a textbook example of natural selection and adaptation since the time of the earliest evolutionists. However, aside from correlational evidence and studies using artificial dummy prey, experiments directly showing that better camouflaged prey to predator vision are at reduced risk of attack are lacking. Here, we show that the level of camouflage achieved through colour adjustments towards the appearance of seaweed habitats is adaptive in reducing predation pressure in the prawn Hippolyte obliquimanus. Digital image analysis and visual modelling of a fish predator (seahorse) predicted that brown prawns would be imperfectly concealed against both brown and red seaweed respectively, whereas pink prawns should be well camouflaged only in red weed. Predation trials with captive seahorses (Hippocampus reidi), coupled with high-speed video analyses, closely matched model predictions: predation rates were similar for brown prawns between seaweed types, but pink individuals were attacked significantly less on red than brown weed. Our work provides some of the clearest direct evidence to date that colour polymorphism and colour change provides a clear adaptive advantage for camouflage, and also highlights how this can be asymmetric across morphs and habitats (i.e. dependent on the specific background-morph combination).


Assuntos
Adaptação Biológica , Mimetismo Biológico , Peixes , Pigmentação , Animais , Evolução Biológica , Ecossistema , Comportamento Predatório , Seleção Genética
2.
Philos Trans R Soc Lond B Biol Sci ; 372(1724)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28533459

RESUMO

Animals from a wide range of taxonomic groups are capable of colour change, of which camouflage is one of the main functions. A considerable amount of past work on this subject has investigated species capable of extremely rapid colour change (in seconds). However, relatively slow colour change (over hours, days, weeks and months), as well as changes arising via developmental plasticity are probably more common than rapid changes, yet less studied. We discuss three key areas of colour change and camouflage. First, we review the mechanisms underpinning colour change and developmental plasticity for camouflage, including cellular processes, visual feedback, hormonal control and dietary factors. Second, we discuss the adaptive value of colour change for camouflage, including the use of different camouflage types. Third, we discuss the evolutionary-ecological implications of colour change for concealment, including what it can tell us about intraspecific colour diversity, morph-specific strategies, and matching to different environments and microhabitats. Throughout, we discuss key unresolved questions and present directions for future work, and highlight how colour change facilitates camouflage among habitats and arises when animals are faced with environmental changes occurring over a range of spatial and temporal scales.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.


Assuntos
Adaptação Biológica , Evolução Biológica , Mimetismo Biológico , Cor , Animais
3.
BMC Evol Biol ; 16(1): 218, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27756220

RESUMO

BACKGROUND: Colour and shape polymorphisms are important features of many species and may allow individuals to exploit a wider array of habitats, including through behavioural differences among morphs. In addition, differences among individuals in behaviour and morphology may reflect different strategies, for example utilising different approaches to camouflage. Hippolyte obliquimanus is a small shrimp species inhabiting different shallow-water vegetated habitats. Populations comprise two main morphs: homogeneous shrimp of variable colour (H) and transparent individuals with coloured stripes (ST). These morphs follow different distribution patterns between their main algal habitats; the brown weed Sargassum furcatum and the pink-red weed Galaxaura marginata. In this study, we first investigated morph-specific colour change and habitat selection, as mechanisms underlying camouflage and spatial distribution patterns in nature. Then, we examined habitat fidelity, mobility, and morphological traits, further indicating patterns of habitat use. RESULTS: H shrimp are capable of changing colour in just a few days towards their algal background, achieving better concealment in the more marginal, and less preferred, red weed habitat. Furthermore, laboratory trials showed that habitat fidelity is higher for H shrimp, whereas swimming activity is higher for the ST morph, aligned to morphological evidence indicating these two morphs comprise a more benthic (H) and a more pelagic (ST) life-style, respectively. CONCLUSIONS: Results suggest that H shrimp utilise a camouflage strategy specialised to a limited number of backgrounds at any one time, whereas ST individuals comprise a phenotype with more generalist camouflage (transparency) linked to a more generalist background utilisation. The coexistence within a population of distinct morphotypes with apparently alternative strategies of habitat use and camouflage may reflect differential responses to substantial seasonal changes in macroalgal cover. Our findings also demonstrate how colour change, behaviour, morphology, and background use all interact in achieving camouflage.


Assuntos
Mimetismo Biológico , Cor , Decápodes/fisiologia , Ecossistema , Animais , Fenótipo , Pigmentação
4.
Proc Biol Sci ; 279(1749): 4907-13, 2012 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-23075843

RESUMO

Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such 'magic' or 'multiple-effect' traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue.


Assuntos
Aves/fisiologia , Borboletas/fisiologia , Comportamento Predatório , Seleção Genética , Animais , Borboletas/genética , Cor , Cadeia Alimentar , Hibridização Genética , Preferência de Acasalamento Animal , Panamá , Fenótipo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA