Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 995307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247585

RESUMO

In this work, we report a successful protocol to obtain in vitro peach palm (Bactris gasipaes Kunth) "Diamantes 10" plants through somatic embryogenesis from transverse thin cell layer (TCL) explants, dissected from three sections (basal, medial, and apical) of lateral offshoots of adult plants cultured on different concentrations of 4-amino-3,5,6-trichloropicolonic acid (picloram). After swelling and development of primary callus in all treatments, without any strong effect of explant origin or picloram concentration, it was possible to observe the formation of embryogenic structures and the exact point from where they developed. Browning was also observed and correlated to the induction treatments, although it was not an impairment for the production of embryogenic structures. Subsequent maturation and conversion of somatic embryos into plantlets allowed their acclimatization 17 months after culture initiation (ACI), which was quicker than previous reports with juvenile tissues (from embryos or seed-germinated plantlets). To the best of our knowledge, this is the first report on peach palm regeneration through somatic embryogenesis from TCL explants from adult plants and could constitute, after fine-tuning the acclimatization stage, a tool for mass clonal propagation of elite genotypes of this open-pollinated crop, as well as for the establishment of conservation strategies of in situ gene bank plant accessions endangered due to aging and other threats.

2.
Methods Mol Biol ; 1359: 279-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26619867

RESUMO

Peach palm (Bactris gasipaes Kunth) is a member of the family Arecaceae and is a multipurpose but underutilized species. Nowadays, fruit production for subsistence and local markets, and heart-of-palm production for local, national, and international markets are the most important uses of this plant. Conventional breeding programs in peach palm are long-term efforts due to the prolonged generation time, large plant size, difficulties with controlled pollination and other factors. Although it is a caespitose palm, its propagation is currently based on seeds, as off-shoots are difficult to root. Hence, tissue culture techniques are considered to be the most likely strategy for efficient clonal plantlet regeneration of this species. Among various techniques, somatic embryogenesis offers the advantages of potential automated large-scale production and putative genetic stability of the regenerated plantlets. The induction of somatic embryogenesis in peach palm can be achieved by using different explant sources including zygotic embryos, immature inflorescences and thin cell layers from the young leaves and shoot meristems. The choice of a particular explant depends on whether clonal propagation is desired or not, as well as on the plant conditions and availability of explants. Protocols to induce and express somatic embryogenesis from different peach palm explants, up to acclimatization of plantlets, are described in this chapter.


Assuntos
Arecaceae/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Técnicas de Cultura de Tecidos/métodos , Arecaceae/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
3.
Plant Cell Rep ; 31(12): 2165-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22865112

RESUMO

UNLABELLED: DNA methylation is an epigenetic regulatory mechanism of gene expression which can be associated with developmental phases and in vitro morphogenetic competence in plants. The present work evaluated the effects of 5-azacytidine (AzaC) and 2,4-dichlorophenoxyacetic acid (2,4-D) on Acca sellowiana somatic embryogenesis (SE) and global DNA methylation levels by high-performance liquid chromatography mass spectrometry (HPLC/MS/MS). 2,4-D-free treatments revealed no somatic embryo formation in both accessions tested. Treatments supplemented with 2,4-D pulse plus AzaC in the culture medium resulted in increased embryo formation. In AzaC-free treatment, HPLC/MS/MS analysis showed a gradual increase in methylation levels in cultures of both accessions tested during SE induction. Treatment with AzaC and 2,4-D-free resulted in a marked decrease in methylation for both accessions, ranging from 37.6 to 20.8 %. In treatment with 2,4-D and AzaC combined, the 85 accession showed increasing global methylation levels. Otherwise, the 101X458 accession, in the same treatment, showed a decrease between 10 and 20 days, followed by an increase after 30 days (39.5, 36.2 and 41.6 %). These results indicate that 2,4-D pulse combined with AzaC improves SE induction. However, the conversion phase showed that although positively influencing SE induction, AzaC had a dysregulatory effect on the stage of autotrophic plant formation, resulting in significantly lower conversion rates. The results suggest that DNA methylation dramatically influences SE in Acca sellowiana, and global DNA methylation dynamics are related to morphogenetic response. KEY MESSAGE: 5-Azacytidine combined with 2,4-D increases the number of Acca sellowiana somatic embryos. Global DNA methylation is directly affected by these compounds.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Azacitidina/farmacologia , Metilação de DNA , Feijoa/efeitos dos fármacos , Técnicas de Embriogênese Somática de Plantas/métodos , Sementes/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Meios de Cultura/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Epigênese Genética , Feijoa/embriologia , Feijoa/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Espectrometria de Massas , Sementes/embriologia , Sementes/genética
4.
Cryo Letters ; 28(1): 13-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17369958

RESUMO

Cryopreservation is a safe and cost-effective option for long-term germplasm conservation of non-orthodox seed species, such as peach palm (Bactris gasipaes). The objective of the present study was to establish a cryopreservation protocol for peach palm zygotic embryos based on the encapsulation-dehydration technique. After excision, zygotic embryos were encapsulated with 3 percent sodium alginate plus 2 M glycerol and 0.4 M sucrose, and pre-treated or not with 1 M sucrose during 24 h, followed by air-drying. Fresh weight water contents of beads decreased from 83 percent and 87 percent to 18 percent and 20 percent for pre-treated or non-pretreated beads, respectively, after 4 h of dehydration. Sucrose pre-treatment at 1 M caused lower zygotic embryo germination and plantlet height in contrast to non-treated beads. All the variables were statistically influenced by dehydration time. Optimal conditions for recovery of cryopreserved zygotic embryos include encapsulation and dehydration for 4 h in a forced air cabinet to 20 percent water content, followed by rapid freezing in liquid nitrogen (-196 degree C) and rapid thawing at 45 degree C. In these conditions 29 percent of the zygotic embryos germinated in vitro. However, plantlets obtained from dehydrated zygotic embryos had stunted haustoria and lower heights. Histological analysis showed that haustorium cells were large, vacuolated, with few protein bodies. In contrast, small cells with high nucleus:cytoplasm ratio formed the shoot apical meristem of the embryos, which were the cell types with favorable characteristics for survival after exposure to liquid nitrogen. Plantlets were successfully acclimatized and showed 41+/-9 percent and 88+/-4 percent survival levels after 12 weeks of acclimatization from cryopreserved and non-cryopreserved treatments, respectively.


Assuntos
Aclimatação , Arecaceae/crescimento & desenvolvimento , Criopreservação/métodos , Sementes/crescimento & desenvolvimento , Técnicas de Cultura , Técnicas de Cultura Embrionária , Germinação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA