Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 2(5): e1501639, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386528

RESUMO

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Ecossistema , Florestas , Biodiversidade , Biomassa , Conservação dos Recursos Naturais , Fazendas , Geografia , América Latina , Clima Tropical
2.
Environ Manage ; 52(1): 136-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23760733

RESUMO

We describe a model of forest flammability, based on daily satellite observations, for national to regional applications. The model defines forest flammability as the percent moisture content of fuel, in the form of litter of varying sizes on the forest floor. The model uses formulas from the US Forest Service that describe moisture exchange between fuel and the surrounding air and precipitation. The model is driven by estimates of temperature, humidity, and precipitation from the moderate resolution imaging spectrometer and tropical rainfall measuring mission multi-satellite precipitation analysis. We provide model results for the southern Amazon and northern Chaco regions. We evaluate the model in a tropical forest-to-woodland gradient in lowland Bolivia. Results from the model are significantly correlated with those from the same model driven by field climate measurements. This model can be run in a near real-time mode, can be applied to other regions, and can be a cost-effective input to national fire management programs.


Assuntos
Incêndios , Modelos Teóricos , Imagens de Satélites , Árvores , Bolívia , Umidade , Chuva , Temperatura , Clima Tropical
3.
Ambio ; 36(7): 600-6, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18074899

RESUMO

Land-cover change in eastern lowland Bolivia was documented using Landsat images from five epochs for all landscapes situated below the montane tree line at approximately 3000 m, including humid forest, inundated forest, seasonally dry forest, and cloud forest, as well as scrublands and grasslands. Deforestation in eastern Bolivia in 2004 covered 45,411 km2, representing approximately 9% of the original forest cover, with an additional conversion of 9042 km2 of scrub and savanna habitats representing 17% of total historical land-cover change. Annual rates of land-cover change increased from approximately 400 km2 y(-1) in the 1960s to approximately 2900 km2 y(-1) in the last epoch spanning 2001 to 2004. This study provides Bolivia with a spatially explicit information resource to monitor future land-cover change, a prerequisite for proposed mechanisms to compensate countries for reducing carbon emissions as a result of deforestation. A comparison of the most recent epoch with previous periods shows that policies enacted in the late 1990s to promote forest conservation had no observable impact on reducing deforestation and that deforestation actually increased in some protected areas. The rate of land-cover change continues to increase linearly nationwide, but is growing faster in the Santa Cruz department because of the expansion of mechanized agriculture and cattle farms.


Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Bolívia , Conservação dos Recursos Naturais/tendências , Ecossistema , Monitoramento Ambiental/métodos , Agricultura Florestal/tendências , Geografia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA