Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part B Rev ; 27(4): 353-365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33135599

RESUMO

Spinal cord injury (SCI) affects the central nervous system (CNS) and there is currently no treatment with the potential for rehabilitation. Although several clinical treatments have been developed, they are still at an early stage and have not shown success in repairing the broken fiber, which prevents cellular regeneration and integral restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering for neural tissue injuries, this review focuses on the latest advances in nanotechnology for SCI treatment and tissue repair. The PubMed database was used for the bibliographic survey. Initial research using the following keywords "tissue engineering and spinal cord injury" revealed 970 articles published in the last 10 years. The articles were further analyzed, excluding those not related to SCI or with results that did not pertain to the field of interest, including the reviews. It was observed that a total of 811 original articles used the quoted keywords. When the word "treatment" was added, 662 articles were found and among them, 529 were original ones. Finally, when the keywords "Nanotechnology and spinal cord injury" were used, 102 articles were found, 65 being original articles. A search concerning the biomaterials used for SCI found 700 articles with 589 original articles. A total of 107 articles were included in the discussion of this review and some are used for the theoretical framework. Recent progress in nanotechnology and tissue engineering has shown promise for repairing CNS damage. A variety of in vivo animal testing for SCI has been used with or without cells and some of these in vivo studies have shown successful results. However, there is no translation to humans using nanotechnology for SCI treatment, although there is one ongoing trial that employs a tissue engineering approach, among other technologies. The first human surgical scaffold implantation will elucidate the possibility of this use for further clinical trials. This review concludes that even though tissue engineering and nanotechnology are being investigated as a possibility for SCI treatment, tests with humans are still in the theoretical stage. Impact statement Thousands of people are affected by spinal cord injury (SCI) per year in the world. This type of lesion is one of the most severe conditions that can affect humans and usually causes permanent loss of strength, sensitivity, and motor function below the injury site. This article reviews studies on the PubMed database, assessing the publications on SCI in the study field of tissue engineering, focusing on the use of nanotechnology for the treatment of SCI. The review makes an evaluation of the biomaterials used for the treatment of this condition and the techniques applied for the production of nanostructured biomaterials.


Assuntos
Traumatismos da Medula Espinal , Animais , Materiais Biocompatíveis , Humanos , Nanotecnologia , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual
2.
Regen Med ; 13(7): 785-801, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30289057

RESUMO

AIM: Scaffolds are a promising approach for spinal cord injury (SCI) treatment. FGF-2 is involved in tissue repair but is easily degradable and presents collateral effects in systemic administration. In order to address the stability issue and avoid the systemic effects, FGF-2 was encapsulated into core-shell microfibers by coaxial electrospinning and its in vitro and in vivo potential were studied. Materials & methods: The fibers were characterized by physicochemical and biological parameters. The scaffolds were implanted in a hemisection SCI rat model. Locomotor test was performed weekly for 6 weeks. After this time, histological analyses were performed and expression of nestin and GFAP was quantified by flow cytometry. Results: Electrospinning resulted in uniform microfibers with a core-shell structure, with a sustained liberation of FGF-2 from the fibers. The fibers supported PC12 cells adhesion and proliferation. Implanted scaffolds into SCI promoted locomotor recovery at 28 days after injury and reduced GFAP expression. CONCLUSION: These results indicate the potential of these microfibers in SCI tissue engineering. [Formula: see text].


Assuntos
Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Medula Espinal/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Teste de Materiais , Células PC12 , Ratos , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/terapia
3.
J Biomed Mater Res A ; 105(5): 1333-1345, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28120428

RESUMO

Engineering neural tissue by combining biodegradable materials, cells and growth factors is a promising strategy for the treatment of central and peripheral nervous system injuries. In this study, neural differentiation of mouse embryonic stem cells (mESCs) was investigated in combination with three dimensional (3D) electrospun nanofibers as a substitute for the extracellular matrix (ECM). Nano/microfibrous poly(lactic-co-glycolic acid) (PLGA) 3D scaffolds were fabricated through electrospinning and characterized. The scaffolds consisted of either a randomly oriented or an aligned structure of PLGA fibers. The mESCs were induced to differentiate into neuronal lineage and the effect of the polymer and fiber orientation on cell survival, morphology and differentiation efficiency was studied. The neural progenitors derived from the mESCs could survive and migrate onto the fibrous scaffolds. Aligned fibers provided more contact guidance with the neurites preferentially extending along the long axis of fiber. The mESCs differentiated into neural lineages expressing neural markers as seen by the immunocytochemistry. The nestin and beta3-tubulin expression was enhanced on the PLGA aligned fibers in comparison with the other groups, as seen by the quantitative analysis. Taken together, a combination of electrospun fiber scaffolds and mESC derived neural progenitor cells could provide valuable information about the effects of topology on neural differentiation and axonal regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1333-1345, 2017.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácido Láctico , Células-Tronco Embrionárias Murinas/metabolismo , Nanofibras/química , Células-Tronco Neurais/metabolismo , Ácido Poliglicólico , Alicerces Teciduais/química , Animais , Antígenos de Diferenciação/biossíntese , Ácido Láctico/química , Ácido Láctico/farmacologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/citologia , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
J Biomed Mater Res A ; 105(2): 424-432, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27684050

RESUMO

The aim of the study has been to evaluate the morphology, proliferation, and pluripotency maintenance of mouse embryonic stem cells (mESCs) cultivated on poly(lactic-co-glycolic acid) scaffolds. The scaffolds were hydrolyzed with NaOH (treated) and nonhydrolyzed (untreated). Morphological and mechanical characterization of the scaffolds was performed. mESC were evaluated for cell viability, cytotoxicity, expression of pluripotency markers, colony morphology, and overall distribution. The treatment generated a reduction in the hydrophobic characteristics of the scaffolds, leading to a higher wettability compared to the untreated group. The viability, cytotoxicity, number of colonies, and the thickness of the cell layer presented similar results between the scaffold groups. The viability test showed that it was possible to cultivate the mESCs on the scaffolds. The cytotoxicity analysis showed that the PLGA scaffolds were not harmful for the cells. The cells maintained the expression of the pluripotency markers Oct4 and Sox2. The number of colonies and the thickness of the cell layer on the scaffold showed that they were not able to colonize the entire volume of the scaffolds. The area occupied by the mESCs was the same between the treated and untreated groups after 14 days in culture. It is possible to conclude that both conditions are equally suitable for maintaining mESC culture. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 424-432, 2017.


Assuntos
Proliferação de Células , Teste de Materiais , Células-Tronco Embrionárias Murinas/metabolismo , Poliglactina 910/química , Alicerces Teciduais/química , Animais , Feminino , Camundongos , Células-Tronco Embrionárias Murinas/citologia
5.
Drug Discov Today ; 21(8): 1243-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155458

RESUMO

Whereas highly porous scaffolds composed of electrospun nanofibers can mimick major features of the extracellular matrix in tissue engineering, they lack the ability to incorporate and release biocompounds (drugs, growth factors) safely in a controlled way. Here, electrospun core-shell fibers (core made from water and aqueous solutions of hydrophilic polymers and the shell from materials with well-defined release mechanisms) offer unique advantages in comparison with those that have helped make porous nanofibrillar scaffolds highly successful in tissue engineering. This review considers the preparation and biofunctionalization of such core-shell fibers as well as applications in various areas, including neural, vascular, cardiac, cartilage and bone tissue engineering, and touches on the topic of clinical trials.


Assuntos
Sistemas de Liberação de Medicamentos , Nanofibras , Engenharia Tecidual , Animais , Humanos , Nanotecnologia , Tecnologia Farmacêutica
6.
Stem Cells Dev ; 23 Suppl 1: 20-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25457956

RESUMO

This article provides a brief overview of research with human pluripotent stem cells in Brazil, the federal funding supporting this research, and the legislation that allows the isolation of human embryonic stem cells.


Assuntos
Células-Tronco Pluripotentes/citologia , Pesquisa com Células-Tronco , Brasil , Ensaios Clínicos como Assunto , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cooperação Internacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA