Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1865(12): 129992, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508835

RESUMO

BACKGROUND: Solving primary structure of lectins leads to an understanding of the physiological roles within an organism and its biotechnological potential. Only eight sponge lectins have had their primary structure fully determined. METHODS: The primary structure of CCL, Chondrilla caribensis lectin, was determined by tandem mass spectrometry. The three-dimensional structure was predicted and the protein-carbohydrate interaction analysed by molecular docking. Furthermore, the anti-leishmanial activity was observed by assays with Leishmania infantum. RESULTS: The amino acid sequence consists of 142 amino acids with a calculated molecular mass of 15,443 Da. The lectin has a galectin-like domain architecture. As observed in other sponge galectins, the signature sequence of a highly conserved domain was also identified in CCL with some modifications. CCL exhibits a typical galectin structure consisting of a ß-sandwich. Molecular docking showed that the amino acids interacting with CCL ligands at the monosaccharide binding site are mostly the same as those conserved in this family of lectins. Through its interaction with L. infantum glycans, CCL was able to inhibit the development of this parasite. CCL also induced apoptosis after eliciting ROS production and altering the membrane integrity of Leishmania infantum promastigote. CONCLUSIONS: CCL joins the restricted group of sponge lectins with determined primary structure and very high biotechnological potential owing to its promising results against pathogens that cause Leishmaniasis. GENERAL SIGNIFICANCE: As the determination of primary structure is important for biological studies, now CCL can become a sponge galectin with an exciting future in the field of human health.


Assuntos
Poríferos , Animais , Galectinas , Simulação de Acoplamento Molecular
2.
Acta Trop ; 174: 72-75, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28690148

RESUMO

Chagas' disease is a neglected disease caused by the protozoan parasite Trypanosoma cruzi and constitutes a serious health problem worldwide. The treatment is limited, with variable efficacy of benznidazole and nifurtimox. Betulinic Acid (BA), a triterpene, can be found in medicinal herbs and has a wide variety of biological and pharmacological activities. The objective was to evaluate betulinic acid effects on the cell death mechanism in Trypanosoma cruzi strain Y. BA inhibited the growth of epimastigotes in periods of 24h (IC50=73.43µM), 48h (IC50=119.8µM) and 72h (IC50=212.2µM) of incubation; of trypomastigotes (IC50=51.88µM) in periods of 24h and intracellular amastigotes (IC50=25.94µM) in periods of 24 and 48h of incubation, no toxicity on LLC-MK2 cells at the concentrations used. Analysis of the possible mechanism of parasite cell death showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species and increase swelling of the reservosomes. In conclusion, betulinic acid was be able to inhibition all developmental forms of Trypanosoma cruzi Y strain with necrotic mechanism and involvement of mitochondrial membrane potential alteration and increase in reactive oxygen species.


Assuntos
Morte Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Animais , Humanos , Necrose , Triterpenos Pentacíclicos , Tripanossomicidas/farmacologia , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA